73 resultados para Vitamin B6
Resumo:
BACKGROUND/AIMS: Adipokines and hepatocellular apoptosis participate in the pathogenesis of nonalcoholic steatohepatitis (NASH). In a randomized trial ursodeoxycholic acid (UDCA) with vitamin E (VitE) improved serum aminotransferases and hepatic histology. The present work evaluates the effect of this combination on adipokines and hepatocellular apoptosis. METHODS: Circulating levels of adiponectin, resistin, leptin, interleukin (IL)-6, IL-8, retinol binding protein-4, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha were measured by enzyme-linked immunoassays at the beginning and after 2 years of treatment with either UDCA+VitE, UDCA+placebo (P) or P+P. Apoptosis was assessed by immunohistochemistry for activated caspase-3 and circulating levels of apoptosis-associated cytokeratin 18 fragments (M30). RESULTS: Levels of adiponectin increased in patients treated with UDCA+VitE, whereas they decreased in the two other groups (P<0.04) and correlated with the improvement of liver steatosis (P<0.04). M30 levels worsened in the P/P group and improved in the other two groups. They correlated with hepatocellular apoptosis (P<0.02) and steatosis (P<0.02) as well as negatively with adiponectin levels (P<0.04). CONCLUSIONS: UDCA+VitE improves not only aminotransferase levels and liver histology of patients with NASH, but also decreases hepatocellular apoptosis and restores circulating levels of adiponectin. These results suggest that the UDCA+VitE combination has metabolic effects in addition to its beneficial cytoprotective properties.
Resumo:
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Resumo:
Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.
Resumo:
To study the effect of fluoride on bone mineral density (BMD) in patients treated chronically with glucocorticosteroids, 15 subjects (renal grafted, n = 12; skin disease, n = 1; broncho pulmonary disorder, n = 1; Crohn's disease, n = 1) were prospectively studied in a double-blinded manner and randomly allocated either to group 1 (n = 8) receiving 13.2 mg/day fluoride given as disodium monofluorophosphate (MFP) supplemented with calcium (1,000 mg/day) and 25-hydroxyvitamin D (calcifediol) (50 micrograms/day), or to group 2 (n = 7) receiving Cas+ calcifediol alone. An additional group of 14 renal transplant patients treated chronically with glucocorticosteroids but exempt of specific therapeutic intervention for bone disease was set up as historical controls. BMD was measured by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000) performed at months 0, 6 and 12 for groups 1 and 2 (lumbar spine, total upper femur, diaphysis and epiphysis of distal tibia), or 11-31 months apart with calculation of linear yearly changes for the historical cohort. Lumbar BMD tended to rise in groups 1 and 2, and to fall in group 3, the change reaching statistical significance (p < 0.05) in group 1, thus leading to a significant difference between groups 1 and 3 (p < 0.05). At upper femur, tibial diaphysis and tibial epiphysis, no significant change in BMD occurred in any of the groups. In conclusion, lumbar BMD rises more after a mild dosis of fluoride given as MFP and combined to calcium and calcifediol than on Ca+ calcifediol alone, without changes in BMD at the upper femur or distal tibia.
Resumo:
OBJECTIVE To evaluate the effects of a 60% vitamin A deficiency (VAD) on the two postnatal stages of lung development: alveolarization and microvascular maturation. Lungs from deficient rats were compared to age-matched controls. STUDY DESIGN Starting at 3 weeks before mating, female rats were maintained under a diet lacking vitamin A. Due to the slow depletion of the vitamin A liver stores the pregnant rats carried to term and delivered pups under mild VAD conditions. Mothers and offspring were then kept under the same diet what resulted in a mean reduction of vitamin A plasma concentration of about 60% vs. controls during the whole experimental period. Pups were sacrificed on days 4, 10 and 21 and their lungs fixed and analyzed by means of a combined morphologic and morphometric investigation at light and electron microscopic levels. RESULTS During the whole experiment, body weights of VAD animals were lower than controls with a significant decrease on day 10. On days 4, 10 and 21 the pulmonary structure was in a comparable gross morphologic state in both groups. Despite this morphologic normality, quantitative alterations in some functional parameters could be detected. On day 4, lung volume and the volume and surface area of air spaces were decreased, while the arithmetic mean barrier thickness and type 2 pneumocyte volume were increased in the VAD group. On day 21, some changes were again manifest mainly consisting in an augmentation of the vascularization and a decrease in interstitial volume in deficient animals. CONCLUSIONS Mild VAD causes no gross disturbances in the postnatal phases of lung development in rats. However, a body weight-related transient retardation of lung maturation was detectable in the first postnatal week. At 3 weeks, the VAD lungs showed a more mature vascular system substantiated by an increase in volume of both capillary volume and the large non-parenchymal vessels. In view of these quantitative alterations, we suspect that mild VAD deregulates the normal phases of body and lung growth, but does not induce serious functional impairments.
Expression, purification and low-resolution structure of human vitamin C transporter SVCT1 (SLC23A1)
Resumo:
Expression and purification of human membrane proteins for structural studies represent a great challenge. This is because micro- to milligram amounts of pure isolated protein are required. To this aim, we successfully expressed the human vitamin C transporter-1 (hSVCT1; SLC23A1) in Xenopus laevis oocytes and isolated highly pure protein in microgram amounts. Recombinant hSVCT1 was functional when expressed in oocytes and glycosylated. Structural analysis of purified hSVCT1 by transmission electron microscopy and single particle analysis unveiled its shape, dimensions and low-resolution structure as well as the existence of a major monomeric and minor dimeric population. Chemical crosslinking of isolated oocyte membranes containing expressed hSVCT1 indicated similar oligomeric states of hSVCT1 in lipid bilayers. This work reports the first purification and structural analysis of a human SVCT protein and opens the way for future functional and structural studies using purified hSVCT1.
Resumo:
Patient self-management (PSM) of oral anticoagulation is under discussion, because evidence from real-life settings is missing. Using data from a nationwide, prospective cohort study in Switzerland, we assessed overall long-term efficacy and safety of PSM and examined subgroups. Data of 1140 patients (5818.9 patient-years) were analysed and no patient were lost to follow-up. Median follow-up was 4.3 years (range 0.2-12.8 years). Median age at the time of training was 54.2 years (range 18.2-85.2) and 34.6% were women. All-cause mortality was 1.4 per 100 patient-years (95% CI 1.1-1.7) with a higher rate in patients with atrial fibrillation (2.5; 1.6-3.7; p<0.001), patients>50 years of age (2.0; 1.6-2.6; p<0.001), and men (1.6; 1.2-2.1; p = 0.036). The rate of thromboembolic events was 0.4 (0.2-0.6) and independent from indications, sex and age. Major bleeding were observed in 1.1 (0.9-1.5) per 100 patient-years. Efficacy was comparable to standard care and new oral anticoagulants in a network meta-analysis. PSM of properly trained patients is effective and safe in a long-term real-life setting and robust across clinical subgroups. Adoption in various clinical settings, including those with limited access to medical care or rural areas is warranted.