60 resultados para Visual and acoustic signaling
Resumo:
Web-scale knowledge retrieval can be enabled by distributed information retrieval, clustering Web clients to a large-scale computing infrastructure for knowledge discovery from Web documents. Based on this infrastructure, we propose to apply semiotic (i.e., sub-syntactical) and inductive (i.e., probabilistic) methods for inferring concept associations in human knowledge. These associations can be combined to form a fuzzy (i.e.,gradual) semantic net representing a map of the knowledge in the Web. Thus, we propose to provide interactive visualizations of these cognitive concept maps to end users, who can browse and search the Web in a human-oriented, visual, and associative interface.
Resumo:
Most previous neurophysiological studies evoked emotions by presenting visual stimuli. Models of the emotion circuits in the brain have for the most part ignored emotions arising from musical stimuli. To our knowledge, this is the first emotion brain study which examined the influence of visual and musical stimuli on brain processing. Highly arousing pictures of the International Affective Picture System and classical musical excerpts were chosen to evoke the three basic emotions of happiness, sadness and fear. The emotional stimuli modalities were presented for 70 s either alone or combined (congruent) in a counterbalanced and random order. Electroencephalogram (EEG) Alpha-Power-Density, which is inversely related to neural electrical activity, in 30 scalp electrodes from 24 right-handed healthy female subjects, was recorded. In addition, heart rate (HR), skin conductance responses (SCR), respiration, temperature and psychometrical ratings were collected. Results showed that the experienced quality of the presented emotions was most accurate in the combined conditions, intermediate in the picture conditions and lowest in the sound conditions. Furthermore, both the psychometrical ratings and the physiological involvement measurements (SCR, HR, Respiration) were significantly increased in the combined and sound conditions compared to the picture conditions. Finally, repeated measures ANOVA revealed the largest Alpha-Power-Density for the sound conditions, intermediate for the picture conditions, and lowest for the combined conditions, indicating the strongest activation in the combined conditions in a distributed emotion and arousal network comprising frontal, temporal, parietal and occipital neural structures. Summing up, these findings demonstrate that music can markedly enhance the emotional experience evoked by affective pictures.
Resumo:
Several studies have linked overexpression of the LIM and SH3 domain protein 1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, its expression pattern and role in human prostate cancer (PCa) remained largely undefined. Analysis of published microarray data revealed a significant overexpression of LASP1 in PCa metastases compared to parental primary tumors and normal prostate epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high and -low PCa identified an association of LASP1 with genes involved in locomotory behavior and chemokine signaling. These bioinformatic predictions were confirmed in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired migration and proliferation in LNCaP prostate cancer cells. By immunohistochemical staining and semi-quantitative image analysis of whole tissue sections we found an enhanced expression of LASP1 in primary PCa and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-PCR analyses for mir-203, which is a known translational suppressor of LASP1 in matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 expression. Collectively, our results suggest that loss of mir-203 expression and thus uncontrolled LASP1 overexpression might drive progression of PCa.
Resumo:
Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage.
Resumo:
The present study was designed to investigate the influences of type of psychophysical task (two-alternative forced-choice [2AFC] and reminder tasks), type of interval (filled vs. empty), sensory modality (auditory vs. visual), and base duration (ranging from 100 through 1,000 ms) on performance on duration discrimination. All of these factors were systematically varied in an experiment comprising 192 participants. This approach allowed for obtaining information not only on the general (main) effect of each factor alone, but also on the functional interplay and mutual interactions of some or all of these factors combined. Temporal sensitivity was markedly higher for auditory than for visual intervals, as well as for the reminder relative to the 2AFC task. With regard to base duration, discrimination performance deteriorated with decreasing base durations for intervals below 400 ms, whereas longer intervals were not affected. No indication emerged that overall performance on duration discrimination was influenced by the type of interval, and only two significant interactions were apparent: Base Duration × Type of Interval and Base Duration × Sensory Modality. With filled intervals, the deteriorating effect of base duration was limited to very brief base durations, not exceeding 100 ms, whereas with empty intervals, temporal discriminability was also affected for the 200-ms base duration. Similarly, the performance decrement observed with visual relative to auditory intervals increased with decreasing base durations. These findings suggest that type of task, sensory modality, and base duration represent largely independent sources of variance for performance on duration discrimination that can be accounted for by distinct nontemporal mechanisms.
Resumo:
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
Resumo:
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.
Resumo:
One novel treatment strategy for the diseased heart focuses on the use of pluripotent stem cell-derived cardiomyocytes (SC-CMs) to overcome the heart's innate deficiency for self-repair. However, targeted application of SC-CMs requires in-depth characterization of their true cardiogenic potential in terms of excitability and intercellular coupling at cellular level and in multicellular preparations. In this study, we elucidated the electrical characteristics of single SC-CMs and intercellular coupling quality of cell pairs, and concomitantly compared them with well-characterized murine native neonatal and immortalized HL-1 cardiomyocytes. Firstly, we investigated the electrical properties and Ca2+ signaling mechanisms specific to cardiac contraction in single SC-CMs. Despite heterogeneity of the new cardiac cell population, their electrophysiological activity and Ca2+ handling were similar to native cells. Secondly, we investigated the capability of paired SC-CMs to form an adequate subunit of a functional syncytium and analyzed gap junctions and signal transmission by dye transfer in cell pairs. We discovered significantly diminished coupling in SC-CMs compared with native cells, which could not be enhanced by a coculture approach combining SC-CMs and primary CMs. Moreover, quantitative and structural analysis of gap junctions presented significantly reduced connexin expression levels compared with native CMs. Strong dependence of intercellular coupling on gap junction density was further confirmed by computational simulations. These novel findings demonstrate that despite the cardiogenic electrophysiological profile, SC-CMs present significant limitations in intercellular communication. Inadequate coupling may severely impair functional integration and signal transmission, which needs to be carefully considered for the prospective use of SC-CMs in cardiac repair.
Resumo:
Out-of-body experiences (OBEs) are illusory perceptions of one's body from an elevated disembodied perspective. Recent theories postulate a double disintegration process in the personal (visual, proprioceptive and tactile disintegration) and extrapersonal (visual and vestibular disintegration) space as the basis of OBEs. Here we describe a case which corroborates and extends this hypothesis. The patient suffered from peripheral vestibular damage and presented with OBEs and lucid dreams. Analysis of the patient's behaviour revealed a failure of visuo-vestibular integration and abnormal sensitivity to visuo-tactile conflicts that have previously been shown to experimentally induce out-of-body illusions (in healthy subjects). In light of these experimental findings and the patient's symptomatology we extend an earlier model of the role of vestibular signals in OBEs. Our results advocate the involvement of subcortical bodily mechanisms in the occurrence of OBEs.
Resumo:
PURPOSE To assess possible effects of working memory (WM) training on cognitive functionality, functional MRI and brain connectivity in patients with juvenile MS. METHODS Cognitive status, fMRI and inter-network connectivity were assessed in 5 cases with juvenile MS aged between 12 and 18 years. Afterwards they received a computerized WM training for four weeks. Primary cognitive outcome measures were WM (visual and verbal) and alertness. Activation patterns related to WM were assessed during fMRI using an N-Back task with increasing difficulty. Inter-network connectivity analyses were focused on fronto-parietal (left and right), default-mode (dorsal and ventral) and the anterior salience network. Cognitive functioning, fMRI and inter-network connectivity were reassessed directly after the training and again nine months following training. RESULTS Response to treatment was seen in two patients. These patients showed increased performance in WM and alertness after the training. These behavioural changes were accompanied by increased WM network activation and systematic changes in inter-network connectivity. The remaining participants were non-responders to treatment. Effects on cognitive performance were maintained up to nine months after training, whereas effects observed by fMRI disappeared. CONCLUSIONS Responders revealed training effects on all applied outcome measures. Disease activity and general intelligence may be factors associated with response to treatment.
Resumo:
Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-κB rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-κB. Similarly, TNFα promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.
Resumo:
Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state-of-the-art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real-world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements.
Resumo:
With rising public concern for animal welfare, many major food chains and restaurants are changing their policies, strictly buying their eggs from non-cage producers. However, with the additional space in these cage-free systems to perform natural behaviours and movements comes the risk of injury. We evaluated the ability to maintain balance in adult laying hens with health problems (footpad dermatitis, keel damage, poor wing feather cover; n = 15) using a series of environmental challenges and compared such abilities with those of healthy birds (n = 5). Environmental challenges consisted of visual and spatial constraints, created using a head mask, perch obstacles, and static and swaying perch states. We hypothesized that perch movement, environmental challenges, and diminished physical health would negatively impact perching performance demonstrated as balance (as measured by time spent on perch and by number of falls of the perch) and would require more exaggerated correctional movements.We measured perching stability whereby each bird underwent eight 30-second trials on a static and swaying perch: with and without disrupted vision (head mask), with and without space limitations (obstacles) and combinations thereof. Video recordings (600 Hz) and a three-axis accelerometer/gyroscope (100 Hz) were used to measure the number of jumps/falls, latencies to leave the perch, as well as magnitude and direction of both linear and rotational balance-correcting movements. Laying hens with and without physical health problems, in both challenged and unchallenged environments, managed to perch and remain off the ground. We attribute this capacity to our training of the birds. Environmental challenges and physical state had an effect on the use of accelerations and rotations to stabilize themselves on a perch. Birds with physical health problems performed a higher frequency of rotational corrections to keep the body centered over the perch, whereas, for both health categories, environmental challenges required more intense and variable movement corrections. Collectively, these results provide novel empirical support for the effectiveness of training, and highlight that overcrowding, visual constraints, and poor physical health all reduce perching performance.
Resumo:
A vast amount of data shows that angiogenesis has a pivotal role in tumor growth, progression, invasiveness and metastasis. This is a complex process involving essential signaling pathways such as vascular endothelial growth factor (VEGF) and Notch in vasculature, as well as additional players such as bone marrow-derived endothelial progenitor cells. Primary tumor cells, stromal cells and cancer stem cells strongly influence vessel growth in tumors. Better understanding of the role of the different pathways and the crosstalk between different cells during tumor angiogenesis are crucial factors for developing more effective anticancer therapies. Targeting angiogenic factors from the VEGF family has become an effective strategy to inhibit tumor growth and so far the most successful results are seen in metastatic colorectal cancer (CRC), renal cell carcinoma (RCC) and non-small cell lung cancer (NSCLL). Despite the initial enthusiasm, the angiogenesis inhibitors showed only moderate survival benefit as monotherapy, along with a high cost and many side effects. Obviously, other important pathways may affect the angiogenic switch, among them Notch signaling pathway attracted a large interest because its ubiquitous role in carcinogenesis and angiogenesis. Herein we present the basics for VEGF and Notch signaling pathways and current advances of targeting them in antiangiogenic, antitumor therapy.