55 resultados para Two-Fluid Model
Resumo:
The ability of the one-dimensional lake model FLake to represent the mixolimnion temperatures for tropical conditions was tested for three locations in East Africa: Lake Kivu and Lake Tanganyika's northern and southern basins. Meteorological observations from surrounding automatic weather stations were corrected and used to drive FLake, whereas a comprehensive set of water temperature profiles served to evaluate the model at each site. Careful forcing data correction and model configuration made it possible to reproduce the observed mixed layer seasonality at Lake Kivu and Lake Tanganyika (northern and southern basins), with correct representation of both the mixed layer depth and water temperatures. At Lake Kivu, mixolimnion temperatures predicted by FLake were found to be sensitive both to minimal variations in the external parameters and to small changes in the meteorological driving data, in particular wind velocity. In each case, small modifications may lead to a regime switch, from the correctly represented seasonal mixed layer deepening to either completely mixed or permanently stratified conditions from similar to 10 m downwards. In contrast, model temperatures were found to be robust close to the surface, with acceptable predictions of near-surface water temperatures even when the seasonal mixing regime is not reproduced. FLake can thus be a suitable tool to parameterise tropical lake water surface temperatures within atmospheric prediction models. Finally, FLake was used to attribute the seasonal mixing cycle at Lake Kivu to variations in the near-surface meteorological conditions. It was found that the annual mixing down to 60m during the main dry season is primarily due to enhanced lake evaporation and secondarily to the decreased incoming long wave radiation, both causing a significant heat loss from the lake surface and associated mixolimnion cooling.
Resumo:
In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong.
Resumo:
INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.
Resumo:
Ovine bone marrow-derived macrophages (BMM) may express several IgG receptor (Fc gamma receptor; FcR) subsets. To study this, model particles (opsonized erythrocytes; EA), which are selectively handled by certain FcR subsets of human macrophages were used in cross-inhibition studies and found to react in a similar manner with FcR subsets of sheep macrophages. In experiments with monoclonal antibodies against subsets of human FcR, human erythrocytes (E) treated with human anti-D-IgG (anti-D-EAhu) and sheep E treated with bovine IgG1 (Bo1-EAs) were handled selectively by human macrophage FcRI and FcRII, respectively. Rabbit-IgG-coated sheep E (Rb-EAs) were recognized by FcRI, FcRII and possibly also by FcRIII of human macrophages. Anti-D-EAhu, Bo1-EAs and Rb-EAs were also ingested by sheep BMM. Competitive inhibition tests, using various homologous and heterologous IgG isotypes as fluid phase inhibitors and the particles used as FcR-specific tools in man (anti-D-EAhu and Bo1-EAs), revealed a heterogeneity of FcR also in sheep BMM. Thus, ingestion of anti-D-EAhu by ovine BMM was inhibited by low concentrations of competitor IgG from rabbit or man in the fluid phase, but not at all by bovine IgG1, whereas ingestion of Bo1-EAs was inhibited by bovine IgG1. This suggested that anti-D-EAhu were recognized by a FcR subset distinct from that recognizing bovine-IgG1. It was concluded that sheep BMM express functional analogs of human macrophage FcRI and FcRII and that Bo1-EAs and anti-D-EAhu are handled by distinct subsets of BMM FcR. All EAhu tested (EAhu treated with anti-D, sheep IgG1 or sheep IgG2) were ingested to a lower degree than EAs. This inefficient phagocytosis could be enhanced by treatment of EAhu with antiglobulin from the rabbit, suggesting that it is caused by a low degree of activity of opsonizing antibodies rather than special properties of the erythrocytes themselves. Several lines of evidence suggested that both FcR subsets of ovine BMM recognize both ovine IgG1 and IgG2. In contrast, bovine IgG1 reacts with one FcR subset and bovine IgG2 interacts inefficiently with all FcR of ovine BMM.
Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods
Resumo:
The exposed Glarus thrust displays midcrustal deformation with tens of kilometers of displacement on an ultrathin layer, the principal slip zone (PSZ). Geological observations indicate that this structure resulted from repeated stick-slip events in the presence of highly overpressured fluids. Here we show that the major characteristics of the Glarus thrust movement (localization, periodicity, and evidence of pressurized fluids) can be reconciled by the coupling of two processes, namely, shear heating and fluid release by carbonate decomposition. During this coupling, slow ductile creep deformation raises the temperature through shear heating and ultimately activates the chemical decomposition of carbonates. The subsequent release of highly overpressurized fluids forms and lubricates the PSZ, allowing a ductile fault to move tens of kilometers on millimeter-thick bands in episodic stick-slip events. This model identifies carbonate decomposition as a key process for motion on the Glarus thrust and explains the source of overpressured fluids accessing the PSZ.
Resumo:
Purpose Malposition of the acetabular component in total hip arthroplasty (THA) is a common surgical problem that can lead to hip dislocation, reduced range of motion and may result in early loosening. The aim of this study is to validate the accuracy and reproducibility of a single x-ray image based 2D/3D reconstruction technique in determining cup inclination and anteversion against two different computer tomography (CT)-based measurement techniques. Methods Cup anteversion and inclination of 20 patients after cementless primary THA was measured on standard anteroposterior (AP) radiographs with the help of the single x-ray 2D/3D reconstruction program and compared with two different 3D CT-based analyses [Ground Truth (GT) and MeVis (MV) reconstruction model]. Results The measurements from the single x-ray 2D/3D reconstruction technique were strongly correlated with both types of CT image-processing protocols for both cup inclination [R²=0.69 (GT); R²=0.59 (MV)] and anteversion [R²=0.89 (GT); R²=0.80 (MV)]. Conclusions The single x-ray image based 2D/3D reconstruction technique is a feasible method to assess cup position on postoperative x-rays. CTscans remain the golden standard for a more complex biomechanical evaluation when a lower tolerance limit (+/-2 degrees) is required.
Resumo:
An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo).
Resumo:
The regenerative pathways during periosteal distraction osteogenesis may be influenced by the local environment composed by cells, growth factors, nutrition and mechanical load. The aim of the present study was to evaluate the influence of two protocols of periosteal distraction on bone formation. Custom made distraction devices were surgically fixed onto the calvariae of 60 rabbits. After an initial healing period of 7 days, two groups of animals were submitted to distraction rates of 0.25 and 0.5 mm/24 h for 10 days, respectively. Six animals per group were sacrificed 10 (mid-distraction), 17 (end-distraction), 24 (1-week consolidation), 31 (2-week consolidation) and 77 days (2-month consolidation) after surgery. Newly formed bone was assessed by means of micro-CT and histologically. Expression of transcripts encoding tissue-specific genes (BMP-2, RUNX2, ACP5, SPARC, collagen I α1, collagen II α1 and SOX9) was analyzed by quantitative PCR. Two patterns of bone formation were observed, originating from the old bone surface in Group I and from the periosteum in Group II. Bone volume (BV) and bone mineral density (BMD) significantly increased up to the 2-month consolidation period within the groups (p < 0.05). Significantly more bone was observed in Group II compared to Group I at the 2-month consolidation period (p < 0.001). Expression of transcripts encoding osteogenic genes in bone depended on the time-point of observation (p < 0.05). Low level of transcripts reveals an indirect role of periosteum in the osteogenic process. Two protocols of periosteal distraction in the present model resulted in moderate differences in terms of bone formation.
Resumo:
BACKGROUND The aim of this study was to evaluate the accuracy of linear measurements on three imaging modalities: lateral cephalograms from a cephalometric machine with a 3 m source-to-mid-sagittal-plane distance (SMD), from a machine with 1.5 m SMD and 3D models from cone-beam computed tomography (CBCT) data. METHODS Twenty-one dry human skulls were used. Lateral cephalograms were taken, using two cephalometric devices: one with a 3 m SMD and one with a 1.5 m SMD. CBCT scans were taken by 3D Accuitomo® 170, and 3D surface models were created in Maxilim® software. Thirteen linear measurements were completed twice by two observers with a 4 week interval. Direct physical measurements by a digital calliper were defined as the gold standard. Statistical analysis was performed. RESULTS Nasion-Point A was significantly different from the gold standard in all methods. More statistically significant differences were found on the measurements of the 3 m SMD cephalograms in comparison to the other methods. Intra- and inter-observer agreement based on 3D measurements was slightly better than others. LIMITATIONS Dry human skulls without soft tissues were used. Therefore, the results have to be interpreted with caution, as they do not fully represent clinical conditions. CONCLUSIONS 3D measurements resulted in a better observer agreement. The accuracy of the measurements based on CBCT and 1.5 m SMD cephalogram was better than a 3 m SMD cephalogram. These findings demonstrated the linear measurements accuracy and reliability of 3D measurements based on CBCT data when compared to 2D techniques. Future studies should focus on the implementation of 3D cephalometry in clinical practice.