104 resultados para Tuberculosis in animals.
Resumo:
A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.
Resumo:
Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.
Resumo:
OBJECTIVES: To evaluate the effects on intestinal oxygen supply, and mucosal tissue oxygen tension during haemorrhage and after fluid resuscitation with either blood (B; n=7), gelatine (G; n=8), or lactated Ringer's solution (R; n=8) in an autoperfused, innervated jejunal segment in anaesthetized pigs. METHODS: To induce haemorrhagic shock, 50% of calculated blood volume was withdrawn. Systemic haemodynamics, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. A flowmeter was used for measuring mesenteric arterial blood flow. Mucosal tissue oxygen tension (PO(2)muc), jejunal microvascular haemoglobin oxygen saturation (HbO(2)) and microvascular blood flow were measured. Measurements were performed at baseline, after haemorrhage and at four 20 min intervals after fluid resuscitation. After haemorrhage, animals were retransfused with blood, gelatine or lactated Ringer's solution until baseline pulmonary capillary wedge pressure was reached. RESULTS: After resuscitation, no significant differences in macrohaemodynamic parameters were observed between groups. Systemic and intestinal lactate concentration was significantly increased in animals receiving lactated Ringer's solution [5.6 (1.1) vs 3.3 (1.1) mmol litre(-1); 5.6 (1.1) vs 3.3 (1.2) mmol litre(-1)]. Oxygen supply to the intestine was impaired in animals receiving lactated Ringer's solution when compared with animals receiving blood. Blood and gelatine resuscitation resulted in higher HbO(2) than with lactated Ringer's resuscitation after haemorrhagic shock [B, 43.8 (10.4)%; G, 34.6 (9.4)%; R, 28.0 (9.3)%]. PO(2)muc was better preserved with gelatine resuscitation when compared with lactated Ringer's or blood resuscitation [20.0 (8.8) vs 13.8 (7.1) mm Hg, 15.2 (7.2) mm Hg, respectively]. CONCLUSION: Blood or gelatine infusion improves mucosal tissue oxygenation of the porcine jejunum after severe haemorrhage when compared with lactated Ringer's solution.
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.
Resumo:
Resuscitation from hemorrhagic shock relies on fluid retransfusion. However, the optimal properties of the fluid have not been established. The aim of the present study was to test the influence of the concentration of hydroxyethyl starch (HES) solution on plasma viscosity and colloid osmotic pressure (COP), systemic and microcirculatory recovery, and oxygen delivery and consumption after resuscitation, which were assessed in the hamster chamber window preparation by intravital microscopy. Awake hamsters were subjected to 50% hemorrhage and were resuscitated with 25% of the estimated blood volume with 5%, 10%, or 20% HES solution. The increase in concentration led to an increase in COP (from 20 to 70 and 194 mmHg) and viscosity (from 1.7 to 3.8 and 14.4 cP). Cardiac index and microcirculatory and metabolic recovery were improved with HES 10% and 20% when compared with 5% HES. Oxygen delivery and consumption in the dorsal skinfold chamber was more than doubled with HES 10% and 20% when compared with HES 5%. This was attributed to the beneficial effect of restored or increased plasma COP and plasma viscosity as obtained with HES 10% and 20%, leading to improved microcirculatory blood flow values early in the resuscitation period. The increase in COP led to an increase in blood volume as shown by a reduction in hematocrit. Mean arterial pressure was significantly improved in animals receiving 10% and 20% solutions. In conclusion, the present results show that the increase in the concentration of HES, leading to hyperoncotic and hyperviscous solutions, is beneficial for resuscitation from hemorrhagic shock because normalization of COP and viscosity led to a rapid recovery of microcirculatory parameters.
Resumo:
Background: Looking for a candidate substance inducing hepatobiliary dysfunction under parenteral nutrition (PN) in newborns, we recently discovered that newborn infusions extract large amounts of the plasticizer diethylhexylphthalate (DEHP) from commonly used polyvinylchloride (PVC) infusion lines. This plasticizer is well known to be genotoxic and teratogenic in animals and to cause changes in various organs and enzyme systems even in humans. The aim of this study was to examine the effect of DEHP, extracted in the same way and in the same amount as in newborns, on livers of young rabbits. Methods: Prepubertal rabbits received lipid emulsion through central IV lines continuously for 3 weeks either via PVC or polyethylene (PE) infusion systems. Livers were examined after 1 and 3 weeks by light and electron microscopy. Results: By light microscopy, hydropic degeneration, single-cell necrosis, fibrosis, and bile duct proliferation were observed more in the PVC group. Electron microscopy revealed multiple nuclear changes, clusters and atypical forms of peroxisomes, proliferation of smooth endoplasmic reticulum, increased deposition of lipofuscin, and a mild perisinusoidal fibrosis only in the PVC group. These changes, which are generally regarded as reaction upon a toxic stimulus, could be exclusively attributed to DEHP. Conclusions: This investigation proved that DEHP produces toxin-like changes in livers of young rabbits in the same dose, duration, and method of administration as in newborn infants. For this reason, it is likely that DEHP is the substance that causes hepatobiliary dysfunction in newborns under PN. Possible modes of action of DEHP are proposed.
Resumo:
Seizures have been reported frequently in feline infectious peritonitis (FIP) but have not been studied in detail in association with this disease. The purpose of this study was to perform a retrospective analysis of neurological signs in a population of 55 cats with a histopathologically confirmed neurological form of FIP. Seizure patterns were determined and it was attempted to relate occurrence of seizures with age, breed, sex and neuropathological features. Fourteen cats had seizure(s), while 41 cats had no history of seizure(s). Generalised tonic-clonic seizures were seen in nine cats; and complex focal seizures were observed in four patients. The exact type of seizure could not be determined in one cat. Status epilepticus was observed in one patient but seizure clusters were not encountered. Occurrence of seizures was not related to age, sex, breed or intensity of the inflammation in the central nervous system. However, seizures were significantly more frequent in animals with marked extension of the inflammatory lesions to the forebrain (P=0.038). Thus, the occurrence of seizures in FIP indicates extensive brain damage and can, therefore, be considered to be an unfavourable prognostic sign.
Resumo:
Recombination of different strains and subtypes is a hallmark of lentivirus infections, particularly for human immunodeficiency virus, and contributes significantly to viral diversity and evolution both within individual hosts and within populations. Recombinant viruses are generated in individuals coinfected or superinfected with more than one lentiviral strain or subtype. This, however, has never been described in vivo for the prototype lentivirus maedi-visna virus of sheep and its closely related caprine counterpart, the caprine arthritis-encephalitis virus. Cross-species infections occur in animals living under natural conditions, which suggests that dual infections with small-ruminant lentiviruses (SRLVs) are possible. In this paper we describe the first documented case of coinfection and viral recombination in two naturally infected goats. DNA fragments encompassing a variable region of the envelope glycoprotein were obtained from these two animals by end-limiting dilution PCR of peripheral blood mononuclear cells or infected cocultures. Genetic analyses, including nucleotide sequencing and heteroduplex mobility assays, showed that these goats harbored two distinct populations of SRLVs. Phylogenetic analysis permitted us to assign these sequences to the maedi-visna virus group (SRLV group A) or the caprine arthritis-encephalitis virus group (SRLV group B). SimPlot analysis showed clear evidence of A/B recombination within the env gene segment of a virus detected in one of the two goats. This case provides conclusive evidence that coinfection by different strains of SRLVs of groups A and B can indeed occur and that these viruses actually recombine in vivo.
Resumo:
The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.
Resumo:
BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.
Endothelin inhibition improves cerebral blood flow and is neuroprotective in pneumococcal meningitis
Resumo:
By using an infant rat model of pneumococcal meningitis, we determined whether endothelins contribute to neuronal damage in this disease. Cerebrospinal fluid analysis demonstrated a significant increase of endothelin-1 in infected animals compared with uninfected controls. Histopathological examination 24 hours after infection showed brain damage in animals treated with ceftriaxone alone (median, 9.2% of cortex; range, 0-49.1%). In infected animals treated intraperitoneally with the endothelin antagonist bosentan (30 mg/kg, every 12 hours) also, injury was reduced to 0.5% (range, 0-8.6%) of cortex. Cerebral blood flow was reduced in infected animals (6.5 +/- 4.0 ml/min/100 g of brain vs 14.9 +/- 9.1 ml/min/100 g in controls. Treatment with bosentan restored cerebral blood flow to levels similar to controls (12.8 +/- 5.3 ml/min/100 g). Improved blood flow was not mediated by nitric oxide production, because bosentan had no effect on cerebrospinal fluid or plasma nitrite/nitrate concentrations at 6, 12, or 18 hours. These data indicate that endothelins contribute to neuronal injury in this model of pneumococcal meningitis by causing cerebral ischemia.
Resumo:
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.
Resumo:
Candida albicans is the most frequent cause of fungal keratitis in temperate regions. Caspofungin has potent activity against Candida spp. in a variety of clinical settings. Little is known, however, about its activity against fungal keratitis. We compared the efficacy of topical caspofungin with that of topical amphotericin B (AMB) in a rabbit model of experimental keratomycosis. Keratitis was induced with a standardized inoculum of Candida albicans (SC 5314) placed on the debrided cornea. Twenty-four hours after infection, animals were randomly assigned to treatment with 0.15% caspofungin, 0.5% caspofungin, 0.15% AMB, and a saline control (n = 12 rabbits in each group). For the first 12 h, treatment was repeated every 30 min and, after a 12-h pause, was resumed at hourly intervals for another 12 h. The animals were examined and killed 12 h after administration of the last dose. Treatment effects were evaluated by clinical assessment, fungal culture, and histopathology. Drug treatment significantly reduced corneal fungal recovery from 3.78 log10 CFU in saline-treated animals to 2.97, 1.76, and 1.18 log10 CFU in animals treated with 0.15% caspofungin, 0.5% caspofungin, and 0.15% AMB, respectively. By histopathology, the mean hyphal density was significantly lower in the corneas of treated animals than in those of the controls; there was no difference in hyphal densities between the different treatment groups. The depth of corneal invasion was not significantly reduced by the antifungal treatments. By clinical assessment, keratitis progressed in animals treated with saline, whereas disease progression was inhibited by all drug treatment regimens. In our rabbit model, 0.5% caspofungin was as effective as 0.15% AMB for the topical treatment of Candida keratitis. The potential clinical efficacy of caspofungin awaits further investigation.
Resumo:
BACKGROUND: Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 microl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. RESULTS: Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16-25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60-31.8]; (P = NS) and 9.8 [1.7-27.3] (controls: 10.5 [2.4-21.75]) in animals treated with high dose RO 25-6981 (P = NS). CONCLUSIONS: Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.
Resumo:
We investigated the effect of cefotaxime and chloramphenicol on endotoxin concentrations in cerebrospinal fluid (CSF) and on the development of brain edema in rabbits with Escherichia coli meningitis. Both antibiotics were similarly effective in reducing bacterial titers. Cefotaxime, but not chloramphenicol, induced a marked increase of endotoxin in CSF, from log10 1.5 +/- 0.8 to log10 2.8 +/- 0.7 ng/ml (P less than .01). This result was associated with an increase in brain water content (405 +/- 12 g of water/100 g of dry weight compared with 389 +/- 8 g in untreated controls; P less than .01), whereas in animals treated with chloramphenicol, brain water content was identical to controls. The cefotaxime-induced increase in endotoxin concentration and brain edema were both neutralized by polymyxin B, which binds to the lipid A moiety of endotoxin, or by a monoclonal antibody to lipid A. These results indicate that treating gram-negative bacillary meningitis with selected antibiotics induces increased endotoxin concentrations in CSF that are associated with brain edema.