112 resultados para Trypsin inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Impaired endothelial function was demonstrated in HIV-infected persons on protease inhibitor (PI)-containing antiretroviral therapy, probably due to altered lipid metabolism. Atazanavir is a PI causing less atherogenic lipoprotein changes. This study determined whether endothelial function improves after switching from other PI to atazanavir. DESIGN: Randomised, observer-blind, treatment-controlled trial. SETTING: Three university-based outpatient clinics. PATIENTS: 39 HIV-infected persons with suppressed viral replication on PI-containing regimens and fasting low-density lipoprotein (LDL)-cholesterol greater than 3 mmol/l. INTERVENTION: Patients were randomly assigned to continue the current PI or change to unboosted atazanavir. MAIN OUTCOME MEASURES: Endpoints at week 24 were endothelial function assessed by flow-mediated dilation (FMD) of the brachial artery, lipid profiles and serum inflammation and oxidative stress parameters. RESULTS: Baseline characteristics and mean FMD values of the two treatment groups were comparable (3.9% (SD 1.8) on atazanavir versus 4.0% (SD 1.5) in controls). After 24 weeks' treatment, FMD decreased to 3.3% (SD 1.4) and 3.4% (SD 1.7), respectively (all p = ns). Total cholesterol improved in both groups (p<0.0001 and p = 0.01, respectively) but changes were more pronounced on atazanavir (p = 0.05, changes between groups). High-density lipoprotein and triglyceride levels improved on atazanavir (p = 0.03 and p = 0.003, respectively) but not in controls. Serum inflammatory and oxidative stress parameters did not change; oxidised LDL improved significantly in the atazanavir group. CONCLUSIONS: The switch from another PI to atazanavir in treatment-experienced patients did not result in improvement of endothelial function despite significantly improved serum lipids. Atherogenic lipid profiles and direct effects of antiretroviral drugs on the endothelium may affect vascular function. Trial registration number: NCT00447070.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Anti-inflammatory drugs are used in the treatment of acute renal colic. The aim of this study was to investigate the effects of selective COX-2 inhibitors and the non-selective COX inhibitor diclofenac on contractility of human and porcine ureters in vitro and in vivo, respectively. COX-1 and COX-2 receptors were identified in human ureter and kidney. EXPERIMENTAL APPROACH: Human ureter samples were used alongside an in vivo pig model with or without partial ureteral obstruction. COX-1 and COX-2 receptors were located in human ureters by immunohistochemistry. KEY RESULTS: Diclofenac and valdecoxib significantly decreased the amplitude of electrically-stimulated contractions in human ureters in vitro, the maximal effect (Vmax) being 120 and 14%, respectively. Valdecoxib was more potent in proximal specimens of human ureter (EC50=7.3 x 10(-11) M) than in distal specimens (EC50=7.4 x 10(-10) M), and the Vmax was more marked in distal specimens (22.5%) than in proximal specimens (8.0%) in vitro. In the in vivo pig model, parecoxib, when compared to the effect of its solvent, significantly decreased the maximal amplitude of contractions (Amax) in non-obstructed ureters but not in obstructed ureters. Diclofenac had no effect on spontaneous contractions of porcine ureter in vivo. COX-1 and COX-2 receptors were found to be expressed in proximal and distal human ureter and in tubulus epithelia of the kidney. CONCLUSIONS AND IMPLICATIONS: Selective COX-2 inhibitors decrease the contractility of non-obstructed, but not obstructed, ureters of the pig in vivo, but have a minimal effect on electrically-induced contractions of human ureters in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complement is an essential part of the innate immune system and plays a crucial role in organ and islet transplantation. Its activation, triggered for example by ischemia/reperfusion (I/R), significantly influences graft survival, and blocking of complement by inhibitors has been shown to attenuate I/R injury. Another player of innate immunity are the dendritic cells (DC), which form an important link between innate and adaptive immunity. DC are relevant in the induction of an immune response as well as in the maintenance of tolerance. Modulation or inhibition of both components, complement and DC, may be crucial to improve the clinical outcome of solid organ as well as islet transplantation. Low molecular weight dextran sulfate (DXS), a well-known complement inhibitor, has been shown to prevent complement-mediated damage of the donor graft endothelium and is thus acting as an endothelial protectant. In this review we will discuss the evidence for this cytoprotective effect of DXS and also highlight recent data which show that DXS inhibits the maturation of human DC. Taken together the available data suggest that DXS may be a useful reagent to prevent the activation of innate immunity, both in solid organ and islet transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study tested whether feelings of personal control over one's life circumstances (i.e., personal mastery) would attenuate the relations between stress (i.e., negative life events and caregiving distress) and Plasminogen Activator Inhibitor (PAI)-1 antigen, an inhibitor of fibrinolysis implicated in the development of cardiovascular disease. DESIGN: Seventy-one spousal dementia caregivers were assessed for plasma levels of PAI-1 antigen, negative life events, caregiver distress, and feelings of personal mastery. Regression analysis was used to determine if personal mastery moderated the relations between stress (i.e., life stress and caregiving distress) and PAI-1 antigen levels. MAIN OUTCOME MEASURE: Plasminogen activator inhibitor (PAI)-1 antigen in plasma. RESULTS: After controlling for other factors associated with PAI-1 antigen levels, negative life events were positively associated with plasma PAI-1 antigen concentrations in participants low in personal mastery (beta = .31; p = .050) but not in individuals high in personal mastery (beta = .22; p = .184). The moderating effect of mastery on the relations between caregiving distress and PAI-1 antigen did not reach statistical significance (p = .091). CONCLUSIONS: These data suggest that mastery may protect individuals from some of the alterations in hemostatic factors that have been linked to cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of the complement system and polymorphonuclear neutrophilic leukocytes plays a major role in mediating reperfusion injury after lung transplantation. We hypothesized that early interference with complement activation would reduce lung reperfusion injury after transplantation. METHODS: Unilateral left lung autotransplantation was performed in 6 sheep. After hilar stripping the left lung was flushed with Euro-Collins solution and preserved for 2 hours in situ at 15 degrees C. After reperfusion the right main bronchus and pulmonary artery were occluded, leaving the animal dependent on the reperfused lung (reperfused group). C1-esterase inhibitor group animals (n = 6) received 200 U/kg body weight of C1-esterase inhibitor as a short infusion, half 10 minutes before, the other half 10 minutes after reperfusion. Controls (n = 6) underwent hilar preparation only. Pulmonary function was assessed by alveolar-arterial oxygen difference and pulmonary vascular resistance. The release of beta-N-acetylglucosaminidase served as indicator of polymorphonuclear neutrophilic leukocyte activation. Extravascular lung water was an indicator for pulmonary edema formation. Biopsy specimens were taken from all groups 3 hours after reperfusion for light and electron microscopy. RESULTS: In the reperfused group, alveolar-arterial oxygen difference and pulmonary vascular resistance were significantly elevated after reperfusion. All animals developed frank alveolar edema. The biochemical marker beta-N-acetylglucosaminidase showed significant leukocyte activation. In the C1-esterase inhibitor group, alveolar-arterial oxygen difference, pulmonary vascular resistance, and the level of polymorphonuclear neutrophilic leukocyte activation were significantly lower. CONCLUSIONS: Treatment with C1-esterase inhibitor reduces reperfusion injury and improves pulmonary function in this experimental model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. METHODS: Based on the conclusion that ML-IAP expression contributes to a malignant phenotype, we down-regulated the ML-IAP mRNA using sequence optimized antisense oligonucleotides. RESULTS: As measured by real-time PCR, oligonucleotides M706 and M711 inhibited ML-IAP mRNA expression by 47% and 52%, respectively in the highly metastatic and drug resistant SK-MEL28 cell line. Oligonucleotide M706, which was previously evaluated in G361 cells as the most efficient inhibitor of ML-IAP expression, was chosen to compare cell viability and drug sensitivity of these two melanoma cell lines with different p53 functionality. Protein expression was reduced by oligonucleotide M706 to 49% of the normal level and resulted in a dose-dependent specific reduction of cell viability with a maximum of 39% at 600 nM. Typical morphological changes showed that loss of viability was mainly due to cell death. In combination experiments, the use of oligonucleotide M706 resulted in a two-fold increase of cisplatin cytotoxicity at different concentrations of oligonucleotide and cisplatin (P<0.05). This is in line with our previous findings in G361 melanoma cell line, in which oligonucleotide M706 caused a 3-fold increase in cisplatin cytotoxicity. CONCLUSION: Our data suggest the use of ML-IAP antisense oligonucleotides to overcome drug resistance in metastatic melanoma, in spite of its p53 status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

End stage renal disease is a major complication after orthotopic liver transplantation (OLT). Vasoconstriction of renal arterial vessels because of calcineurin inhibitor (CNI) treatment plays a pivotal role in the development of renal insufficiency following OLT. Renal resistance can be measured non-invasively by determining the resistance index (RI) of segmental arteries by color-coded duplex ultrasonography, a measure with predictive value for future renal failure. Sixteen OLT patients on long-term CNI therapy were recruited prospectively and randomly assigned either to receive the m-TOR inhibitor sirolimus (SRL) or to continue on CNI treatment, and were followed for one yr. Serum creatinine (crea) declined after conversion to SRL, whereas it tended to increase in patients remaining on CNI (meanDelta crea SRL: -27, -18, -18, -15 micromol/L; meanDelta crea CNI: 4, 5, 8, 11 micromol/L at 1, 3, 6, 12 months, p = 0.02). RI improved after switching to SRL and was lower on SRL than on CNI (meanDeltaRI SRL: -0.04, -0.04, -0.03, -0.03; meanDeltaRI CNI: -0.006, 0.004, -0.007, -0.01 after 1, 3, 6, 12 months, p = 0.016). Individual changes of RI correlated significantly with individual changes of crea (r = 0.54, p < 0.001). Conversion from CNI to SRL can ameliorate renal function accompanied by a reduction of intrarenal RI after OLT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: With the emergence of Src inhibitors in clinical trials, improved knowledge of the molecular responses of cancer cells to these agents is warranted. This will facilitate the development of tests to identify patients who may benefit from these agents, allow drug activity to be monitored and rationalize the combination of these agents with other treatment modalities. METHODS: This study evaluated the molecular and functional effects of Src inhibitor AZD0530 in human lung cancer cells, by Western blotting and reverse transcription-polymerase chain reaction, and by assays for cell viability, migration, and invasion. RESULTS: Src was activated in four of five cell lines tested and the level corresponded with the invasive potential and the histologic subtype. Clinically relevant, submicromolar concentrations of AZD0530 blocked Src and focal adhesion kinase, resulting in significant inhibition of cell migration and Matrigel invasion. Reactivation of STAT3 and up-regulation of JAK indicated a potential mechanism of resistance. AZD0530 gave a potent and sustained blockage of AKT and enhanced the sensitivity to irradiation. CONCLUSIONS: The results indicated that AZD0530, aside from being a potent inhibitor of tumor cell invasion which could translate to inhibition of disease progression in the clinic, may also lower resistance of lung cancer cells to pro-apoptotic signals.