125 resultados para Tree allometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

External forcing and internal dynamics result in climate system variability ranging from sub-daily weather to multi-centennial trends and beyond1, 2. State-of-the-art palaeoclimatic methods routinely use hydroclimatic proxies to reconstruct temperature (for example, refs 3, 4), possibly blurring differences in the variability continuum of temperature and precipitation before the instrumental period. Here, we assess the spectral characteristics of temperature and precipitation fluctuations in observations, model simulations and proxy records across the globe. We find that whereas an ensemble of different general circulation models represents patterns captured in instrumental measurements, such as land–ocean contrasts and enhanced low-frequency tropical variability, the tree-ring-dominated proxy collection does not. The observed dominance of inter-annual precipitation fluctuations is not reflected in the annually resolved hydroclimatic proxy records. Likewise, temperature-sensitive proxies overestimate, on average, the ratio of low- to high-frequency variability. These spectral biases in the proxy records seem to propagate into multi-proxy climate reconstructions for which we observe an overestimation of low-frequency signals. Thus, a proper representation of the high- to low-frequency spectrum in proxy records is needed to reduce uncertainties in climate reconstruction efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An utrastructural morphometric study of the postnatally remodelling lungs of the quokka wallaby (Setonix brachyurus) was undertaken. Allometric scaling of the volumes of the parenchymal components against body mass was performed. Most parameters showed a positive correlation with body mass in all the developmental stages, except the volume of type II pneumocytes during the alveolar stage. The interstitial tissue and type II cell volumes increased slightly faster than body mass in the saccular stage, their growth rates declining in the alveolar stage. Conversely, type I pneumocyte volumes increased markedly in both the saccular and alveolar stages. Both capillary and endothelial volumes as well as the capillary and airspace surface areas showed highest rates of increase during the alveolar stage, at which time the rate was notably higher than that of the body mass. The pulmonary diffusion capacity increased gradually, the rate being highest in the alveolar stage and the adult values attained were comparable to those of eutherians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m x 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54% of lichen and 20% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38% of the lichen and 4% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the most important tree-level contributions connected with the b→uu ¯ ¯ dγ transition to the inclusive radiative decay B ¯ ¯ ¯ →X d γ using fragmentation functions. In this framework the singularities arising from collinear photon emission from the light quarks (u , u ¯ ¯ , and d ) can be absorbed into the (bare) quark-to-photon fragmentation function. We use as input the fragmentation function extracted by the ALEPH group from the two-jet cross section measured at the large electron positron (LEP) collider, where one of the jets is required to contain a photon. To get the quark-to-photon fragmentation function at the fragmentation scale μ F ∼m b , we use the evolution equation, which we solve numerically. We then calculate the (integrated) photon energy spectrum for b→uu ¯ ¯ dγ related to the operators P u 1,2 . For comparison, we also give the corresponding results when using nonzero (constituent) masses for the light quarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stemmatology, or the reconstruction of the transmission history of texts, is a field that stands particularly to gain from digital methods. Many scholars already take stemmatic approaches that rely heavily on computational analysis of the collated text (e.g. Robinson and O’Hara 1996; Salemans 2000; Heikkilä 2005; Windram et al. 2008 among many others). Although there is great value in computationally assisted stemmatology, providing as it does a reproducible result and allowing access to the relevant methodological process in related fields such as evolutionary biology, computational stemmatics is not without its critics. The current state-of-the-art effectively forces scholars to choose between a preconceived judgment of the significance of textual differences (the Lachmannian or neo-Lachmannian approach, and the weighted phylogenetic approach) or to make no judgment at all (the unweighted phylogenetic approach). Some basis for judgment of the significance of variation is sorely needed for medieval text criticism in particular. By this, we mean that there is a need for a statistical empirical profile of the text-genealogical significance of the different sorts of variation in different sorts of medieval texts. The rules that apply to copies of Greek and Latin classics may not apply to copies of medieval Dutch story collections; the practices of copying authoritative texts such as the Bible will most likely have been different from the practices of copying the Lives of local saints and other commonly adapted texts. It is nevertheless imperative that we have a consistent, flexible, and analytically tractable model for capturing these phenomena of transmission. In this article, we present a computational model that captures most of the phenomena of text variation, and a method for analysis of one or more stemma hypotheses against the variation model. We apply this method to three ‘artificial traditions’ (i.e. texts copied under laboratory conditions by scholars to study the properties of text variation) and four genuine medieval traditions whose transmission history is known or deduced in varying degrees. Although our findings are necessarily limited by the small number of texts at our disposal, we demonstrate here some of the wide variety of calculations that can be made using our model. Certain of our results call sharply into question the utility of excluding ‘trivial’ variation such as orthographic and spelling changes from stemmatic analysis.