154 resultados para Tissue Engineering, Zonal Organisation, Cartilage, Chondrocyte, Clusterin
Resumo:
Prosthetic and osteosynthetic implants from metal alloys will be indispensable in orthopedic surgery, as long as tissue engineering and biodegradable bone substitutes do not lead to products that will be applied in clinical routine for the repair of bone, cartilage, and joint defects. Therefore, the elucidation of the interactions between the periprosthetic tissues and the implant remains of clinical relevance and several factors are known to affect the longevity of implants. Within this study, the effects of metal particles and surface topography on the recruitment of osteoclasts was investigated in vitro in a coculture of osteoblasts and bone marrow cells. The cells were grown in the presence of particles of different sizes and chemical composition or on metal discs with polished or sandblasted surfaces, respectively. At the end of the culture, newly formed osteoclasts were counted. Osteoclastogenesis was reduced when particles were added directly to the coculture. The effect depended on the size of the particles, small particles exerting stronger effects than larger ones. The chemical composition of the particles, however, did not affect the development of osteoclasts. In cocultures grown on sandblasted surfaces, osteoclasts developed at higher rates than they did in cultures on polished surfaces. The data demonstrate that wear particles and implant surfaces affect osteoclastogenesis and thus may be involved in the induction of local bone resorption and the formation of osteolytic lesions, leading eventually to the loosening of orthopedic implants.
Resumo:
Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Resumo:
Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.
Resumo:
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.
Resumo:
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.
Resumo:
In tissue engineering, a variety of methods are commonly used to evaluate survival of cells inside tissues or three-dimensional (3D) carriers. Among these methods confocal laser scanning microscopy opened accessibility of 3D tissue using live cell imaging into the tissue or 3D scaffolds. However, although this technique is ideally applied to 3D tissue or scaffolds with thickness up to several millimetres, this application is surprisingly rare and scans are often done on slices with thickness <20 μm. Here, we present novel protocols for the staining of 3D tissue (e.g. intervertebral disc tissue) and scaffolds, such as fibrin gels or alginate beads.
Resumo:
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Resumo:
Degeneration of intervertebral discs (IVD) is one of the main causes of back pain and tissue engineering has been proposed as a treatment. Tissue engineering requires the use of highly expensive growth factors, which might, in addition, lack regulatory approval for human use. In an effort to find readily available differentiation factors, we tested three molecules – dexamethasone, triiodothyronine (T3) and insulin – on human IVD cells isolated after surgery, expanded in vitro and transferred into alginate beads. Triplicates containing 40 ng/ml dexamethasone, 10 nM T3 and 10 µg/ml insulin, together with a positive control (10 ng/mL transforming growth factor (TGF)-beta 1), were sampled weekly over six weeks and compared to a negative control. Furthermore, we compared the results to cultures with optimized chondrogenic media and under hypoxic condition (2% O2). Glycosaminoglycan (GAG) determination by Alcian Blue assay and histological staining showed dexamethasone to be more effective than T3 and insulin, but less than TGF-beta1. DNA quantification showed that only dexamethasone stimulated cell proliferation. qPCR demonstrated that TGF-beta1 and the optimized chondrogenic groups increased the expression of collagen type II, while aggrecan was stimulated in cultures containing dexamethasone. Hypoxia increased GAG accumulation, collagen type II and aggrecan expression, but had no effect on or even lowered cell number. In conclusion, dexamethasone is a valuable and cost-effective molecule for chondrogenic and viability induction of IVD cells under normoxic and hypoxic conditions, while insulin and T3 did not show significant differences.
Resumo:
In Switzerland around 30,000 patients suffer from chronic skin wounds. Appropriate topical wound care along with treatment of the causes of the wounds enables to heal a lot of these patients and to avoid secondary disease such as infections. Thereby, the final goal of wound care is stable reepithelisation. Based on experience with chronic leg ulcers mainly in our out-patient wound centre, we give a survey of the wound dressings we actually use and discuss their wound-phase adapted application. Furthermore, we address the two tissue engineering products reimbursed in Switzerland, Apligraf and EpiDex, as well as the biological matrix product Oasis. The crucial question, which treatment options will be offered in future to the wound patients by our health regulatory and insurance systems, is open to debate.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.
Resumo:
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The "gold standard" for treatment of intervertebral disc herniations and degenerated discs is still spinal fusion, corresponding to the saying "no disc - no pain". Mechanical prostheses, which are currently implanted, do only have medium outcome success and have relatively high re-operation rates. Here, we discuss some of the biological intervertebral disc replacement approaches, which can be subdivided into at least two classes in accordance to the two different tissue types, the nucleus pulposus (NP) and the annulus fibrosus (AF). On the side of NP replacement hydrogels have been extensively tested in vitro and in vivo. However, these gels are usually a trade-off between cell biocompatibility and load-bearing capacity, hydrogels which fulfill both are still lacking. On the side of AF repair much less is known and the question of the anchoring of implants is still to be addressed. New hope for cell therapy comes from developmental biology investigations on the existence of intervertebral disc progenitor cells, which would be an ideal cell source for cell therapy. Also notochordal cells (remnants of the embryonic notochord) have been recently pushed back into focus since these cells have regenerative potential and can activate disc cells. Growth factor treatment and molecular therapies could be less problematic. The biological solutions for NP and AF replacement are still more fiction than fact. However, tissue engineering just scratched the tip of the iceberg, more satisfying solutions are yet to be added to the biomedical pipeline.