105 resultados para Time course
Resumo:
The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.
Resumo:
Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
The toxicity of pneumococci and endotoxin in primary cultures of rat neurons, astrocytes, and microglia and in a human astrocyte and two human glial cell lines was determined. Heat-inactivated, rough pneumococci (up to 10(8) cfu/mL) or their cell wall (up to 50 micrograms/mL) produced dose-dependent toxicity after 48 h in microglial cells and to a lesser extent in astrocytes but not in neurons. Toxicity was similar for equivalent doses of heat-inactivated organisms and pneumococcal cell wall, but time-course experiments showed significant differences between the two stimuli. Endotoxin at concentrations of up to 5 micrograms/mL did not induce significant toxicity in any of the cells. Thus, pneumococci can induce toxicity in two brain cell types, microglia and astrocytes, and the pneumococcal cell wall appears to mediate toxicity. Direct toxic effects of bacteria on brain cells may in part be responsible for brain injury during meningitis.
Resumo:
Stent thrombosis (ST) after percutaneous coronary intervention has been the focus of intense interest because of its attendant morbidity and mortality. There is controversy about several facets of the problem. These include the frequency of ST with drug-eluting stents (DES) versus bare-metal stents (BMS), the timing of the event, clinical consequences, risk factors, adjunctive therapy, and new preventive approaches. Information has accrued rapidly from several sources, including randomized controlled clinical trials of DES versus BMS in carefully selected subsets of patients and registry experiences in larger patient groups, which provide a more universal real-world picture. The results from these different data sets are not completely concordant. However, several general conclusions can be made: 1) ST is an infrequent but very severe complication of both BMS and DES; 2) at the present time, during 4 years of follow-up from randomized controlled trials that compared DES and BMS, there is no apparent difference in overall ST frequency, although the time course for occurrence appears to differ, with a relative numeric excess of ST late after DES implant; 3) despite this relative imbalance, no differences in the end points of death or death and infarction between DES and BMS are observed; 4) longer-term follow-up of these patients as well as larger angiographic and clinical subsets of patients who receive this technology outside of randomized trials are required to fully study this issue; and 5) advances in stent platforms for drug elution as well as adjunctive pharmacologic therapy are being evaluated to enhance long-term safety.
Resumo:
BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.
Resumo:
AIM: This study was conducted to delineate partnership-relation functioning over time and specifically matched to various organs such as heart, liver, and kidney. METHOD: Prospective, paralleled case-control-study including patients and their respective partners before and one year after organ transplantation in 23 heart-transplant recipients, 19 liver-transplant patients, and 16 kidney-transplant recipients. To assess partnership functioning, the FB-Z (family assessment measure) of Cierpka and Frevert was used. Statistics included descriptive methods, correlations, and analysis of variance including the items "organ" and "time". RESULTS: Heart-transplant recipients and their partners show significant better overall measures in their partnership ratings (sum-value) in comparison to liver or kidney patients and their partners. In all patient and partner groups, except in kidney-transplant recipients a significant deterioration over time is discernible in the subscales role performance and emotionality. In respect to the item "organ" significant differences were found in overall functioning and the subscale communication where heart-transplant recipients and their partners have significant better functioning compared to kidney or liver transplant patients. In kidney patients and their partners only communication changes to the better in the time course. CONCLUSION: In any organ transplantation the two sides of the coin are important to bear in mind, the one is the live-saving act of transplantation as such, the other is the important distress in the phase before but equally after the operation, mainly in the first year where patients and their respective partners have to be followed and treated even in respect to psychosocial and marital functioning.
Resumo:
OBJECT: Glycerol is considered to be a marker of cell membrane degradation and thus cellular lysis. Recently, it has become feasible to measure via microdialysis cerebral extracellular fluid (ECF) glycerol concentrations at the patient's bedside. Therefore the aim of this study was to investigate the ECF concentration and time course of glycerol after severe traumatic brain injury (TBI) and its relationship to patient outcome and other monitoring parameters. METHODS: As soon as possible after injury for up to 4 days, 76 severely head-injured patients were monitored using a microdialysis probe (cerebral glycerol) and a Neurotrend sensor (brain tissue PO2) in uninjured brain tissue confirmed by computerized tomography scanning. The mean brain tissue glycerol concentration in all monitored patients decreased significantly from 206 +/- 31 micromol/L on Day 1 to 9 +/- 3 micromol/L on Day 4 after injury (p < 0.0001). Note, however, that there was no significant difference in the time course between patients with a favorable outcome (Glasgow Outcome Scale [GOS] Scores 4 and 5) and those with an unfavorable outcome (GOS Scores 1-3). Significantly increased glycerol concentrations were observed when brain tissue PO2 was less than 10 mm Hg or when cerebral perfusion pressure was less than 70 mm Hg. CONCLUSIONS: Based on results in the present study one can infer that microdialysate glycerol is a marker of severe tissue damage, as seen immediately after brain injury or during profound tissue hypoxia. Given that brain tissue glycerol levels do not yet add new clinically significant information, however, routine monitoring of this parameter following traumatic brain injury needs further validation.
Resumo:
OBJECTIVE: Nitric oxide (NO), one of the most powerful endogenous vasodilators, is thought to play a major role in the development of delayed vasospasm in patients with subarachnoid hemorrhage (SAH). However, the role of the production of cerebral NO in patients with SAH is not known. In other SAH studies, NO metabolites such as nitrite and nitrate have been demonstrated to be decreased in cerebrospinal fluid and in plasma. METHODS: In this study, a microdialysis probe was used, along with a multiparameter sensor, to measure NO metabolites, brain tissue oxygen tension, brain tissue carbon dioxide tension, and pH in the cortex of patients with severe SAH who were at risk for developing secondary brain damage and vasospasm. NO metabolites, glucose, and lactate were analyzed in the dialysates to determine the time course of NO metabolite changes and to test the interrelationship between the analytes and clinical variables. RESULTS: Brain tissue oxygen tension was strongly correlated to dialysate nitrate and nitrite (r2 = 0.326; P < 0.001); however, no correlation was noted between brain tissue oxygen tension and NO metabolites in cerebrospinal fluid (r2 = 0.018; P = 0.734). No significant correlation between NO production, brain tissue carbon dioxide tension, and dialysate glucose and lactate was observed. CONCLUSION: Cerebral ischemia and compromised substrate delivery are often responsible for high morbidity rates and poor outcomes after SAH. The relationship between brain tissue oxygen and cerebral NO metabolites that we demonstrate suggests that substrate delivery and NO are linked in the pathophysiology of vasospasm after SAH.
Resumo:
In this study, a time-course comparison of human articular chondrocytes (HAC) and bone marrow-derived mesenchymal stem cells (MSC) immunophenotype was performed in order to determine similarities/differences between both cell types during monolayer culture, and to identify HAC surface markers indicative of dedifferentiation. Our results show that dedifferentiated HAC can be distinguished from MSC by combining CD14, CD90, and CD105 expression, with dedifferentiated HAC being CD14+/CD90bright/CD105dim and MSC being CD14-/CD90dim/CD105bright. Surface markers on MSC showed little variation during the culture, whereas HAC showed upregulation of CD90, CD166, CD49c, CD44, CD10, CD26, CD49e, CD151, CD51/61, and CD81, and downregulation of CD49a, CD54, and CD14. Thus, dedifferentiated HAC appear as a bona fide cell population rather than a small population of MSC amplified during monolayer culture. While most of the HAC surface markers showed major changes at the beginning of the culture period (Passage 1-2), CD26 was upregulated and CD49a downregulated at later stages of the culture (Passage 3-4). To correlate changes in HAC surface markers with changes in extracellular matrix gene expression during monolayer culture, CD14 and CD90 mRNA levels were combined into a new differentiation index and compared with the established differentiation indices based on the ratios of mRNA levels of collagen type II to I (COL2/COL1) and of aggrecan to versican (AGG/VER). A correlation of CD14/CD90 ratio at the mRNA and protein level with the AGG/VER ratio during HAC dedifferentiation in monolayer culture validated CD14/CD90 as a new membrane and mRNA based HAC differentiation index.
Resumo:
BACKGROUND: Tissues are endowed with protective mechanisms to counteract chronic ischemia. Previous studies have demonstrated that endogenous heme oxygenase (HO)-1 may protect parenchymal tissue from inflammation- and reoxygenation-induced injury. Nothing is known, however, on whether endogenous HO-1 also plays a role in chronic ischemia to protect from development of tissue necrosis. The aim of this study is, therefore, to evaluate in vivo whether endogenous HO-1 exerts protection on chronically ischemic musculocutaneous tissue, and whether this protection is mediated by an attenuation of the microcirculatory dysfunction. MATERIALS AND METHODS: In C57BL/6-mice, a chronically ischemic flap was elevated and fixed into a dorsal skinfold chamber. In a second group, tin-protoporphyrin-IX was administrated to competitively block the action of HO-1. Animals without flap elevation served as controls. With the use of intravital fluorescence microscopy, microcirculation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day observation period. The time course of HO-1 expression was determined by Western blotting. RESULTS: Chronic ischemia induced an increase of HO-1 expression, particularly at day 1 and 3. This was associated with arteriolar dilation and hyperperfusion, which was capable of maintaining an adequate capillary perfusion density in the critically perfused central part of the flap, demarcating the distal necrosis. Inhibition of endogenous HO-1 by tin-protoporphyrin-IX completely abrogated arteriolar dilation (44.6 +/- 6.2 microm versus untreated flaps: 71.3 +/- 7.3 microm; P < 0.05) and hyperperfusion (3.13 +/- 1.29 nL/s versus 8.55 +/- 3.56 nL/s; P < 0.05). This resulted in a dramatic decrease of functional capillary density (16 +/- 16 cm/cm(2)versus 84 +/- 31 cm/cm(2); P < 0.05) and a significant increase of apoptotic cell death (585 +/- 51 cells/mm(2)versus 365 +/- 53 cells/mm(2); P < 0.05), and tissue necrosis (73% +/- 5% versus 51% +/- 5%; P < 0.001). CONCLUSION: Thus, our results suggest that chronic ischemia-induced endogenous HO-1 protects ischemically endangered tissue, probably by the vasodilatory action of the HO-1-associated carbon monoxide.
Resumo:
BACKGROUND AND PURPOSE: We set out to investigate the predictors and time course for recanalization of spontaneous dissection of the cervical internal carotid artery (SICAD). METHODS: We prospectively included 249 consecutive patients (mean age, 45+/-11 years) with 268 SICAD. Ultrasound examinations were performed at presentation, during the first month, and then at 3, 6, and 12 months, and clinical follow-ups after 3, 6, and 12 months. RESULTS: Of 268 SICADs, 20 (7.5%) presented with
Resumo:
This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess oculomotor deficits after a focal lesion using a variety of oculomotor paradigms, and to study the oculomotor consequences of the lesion in the chronic phase. Saccades are controlled by different cortical regions, which could be partially specialised in the triggering of a specific type of saccade. The division of saccades into reflexive visually guided saccades and intentional or volitional saccades corresponds to distinct regions of the neuronal network, which are involved in the control of such saccades. TMS allows to specifically interfere with the functioning of a region within an intact oculomotor network. TMS provides advantages in terms of temporal resolution, allowing to interfere with brain functioning in the order of milliseconds, thereby allowing to define the time course of saccade planning and execution. In the first part of the paper, we present an overview of the cortical structures important for saccade control, and discuss the pro's and con's of the different methodological approaches to study the cortical oculomotor network. In the second part, the functional network involved in reflexive and volitional saccades is presented. Finally, studies concerning recovery mechanisms after a lesion of the oculomotor cortex are discussed.
Resumo:
OBJECTIVES: To evaluate the relationship between T1 after intravenous contrast administration (T1Gd) and Delta relaxation rate (DeltaR1) = (1/T1(Gd) - 1/T1o) in the delayed Gadolinium-Enhanced MRI of cartilage (dGEMRIC) evaluation of cartilage repair tissue. MATERIALS AND METHODS: Thirty single MR examinations from 30 patients after matrix-associated autologous chondrocyte transplantations of the knee joint with different postoperative intervals were examined using an 8-channel knee-coil at 3T. T1 mapping using a 3D GRE sequence with a 35/10 degrees flip angle excitation pulse combination was performed before and after contrast administration (dGEMRIC technique). T1 postcontrast (T1(Gd)) and the DeltaR1 (relative index of pre- and postcontrast R1 value) were calculated for repair tissue and the weight-bearing normal appearing control cartilage. For evaluation of the different postoperative intervals, MR exams were subdivided into 3 groups (up to 12 months, 12-24 months, more than 24 months). For statistical analysis Spearman correlation coefficients were calculated. RESULTS: The mean value for T1 postcontrast was 427 +/- 159 ms, for DeltaR1 1.85 +/- 1.0; in reference cartilage 636 +/- 181 ms for T1 postcontrast and 0.83 +/- 0.5 for DeltaR1.The correlation coefficients were highly significant between T1 (Gd) and DeltaR1 for repair tissue (0.969) as well as normal reference cartilage (0.928) in total, and for the reparative cartilage in the early, middle postoperative, and late postoperative interval after surgery (R values: -0.986, -0.970, and -0.978, respectively). Using either T1(Gd) or DeltaR1, the 2 metrics resulted in similar conclusions regarding the time course of change of repair tissue and control tissue, namely that highly significant (P > 0.01) differences between cartilage repair tissue and reference cartilage were found for all follow-up groups. Additionally, for both metrics highly significant differences (P < 0.01) between early follow up and the 2 later postoperative groups for cartilage repair tissue were found. No statistical differences were found between the 2 later follow-up groups of reparative cartilage either for T1 (Gd) or DeltaR1. CONCLUSION: The high correlation between T1 (Gd) and DeltaR1 and the comparable conclusions reached utilizing metric implies that T1 mapping before intravenous administration of MR contrast agent is not necessary for the evaluation of repair tissue. This will help to reduce costs, inconvenience for the patients, simplifies the examination procedure, and makes dGEMRIC more attractive for follow-up of patients after cartilage repair surgeries.
Resumo:
Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.