70 resultados para The Studio Model
Resumo:
The ability of the one-dimensional lake model FLake to represent the mixolimnion temperatures for tropical conditions was tested for three locations in East Africa: Lake Kivu and Lake Tanganyika's northern and southern basins. Meteorological observations from surrounding automatic weather stations were corrected and used to drive FLake, whereas a comprehensive set of water temperature profiles served to evaluate the model at each site. Careful forcing data correction and model configuration made it possible to reproduce the observed mixed layer seasonality at Lake Kivu and Lake Tanganyika (northern and southern basins), with correct representation of both the mixed layer depth and water temperatures. At Lake Kivu, mixolimnion temperatures predicted by FLake were found to be sensitive both to minimal variations in the external parameters and to small changes in the meteorological driving data, in particular wind velocity. In each case, small modifications may lead to a regime switch, from the correctly represented seasonal mixed layer deepening to either completely mixed or permanently stratified conditions from similar to 10 m downwards. In contrast, model temperatures were found to be robust close to the surface, with acceptable predictions of near-surface water temperatures even when the seasonal mixing regime is not reproduced. FLake can thus be a suitable tool to parameterise tropical lake water surface temperatures within atmospheric prediction models. Finally, FLake was used to attribute the seasonal mixing cycle at Lake Kivu to variations in the near-surface meteorological conditions. It was found that the annual mixing down to 60m during the main dry season is primarily due to enhanced lake evaporation and secondarily to the decreased incoming long wave radiation, both causing a significant heat loss from the lake surface and associated mixolimnion cooling.
Resumo:
We study lepton flavor observables in the Standard Model (SM) extended with all dimension-6 operators which are invariant under the SM gauge group. We calculate the complete one-loop predictions to the radiative lepton decays μ → eγ, τ → μγ and τ → eγ as well as to the closely related anomalous magnetic moments and electric dipole moments of charged leptons, taking into account all dimension-6 operators which can generate lepton flavor violation. Also the 3-body flavor violating charged lepton decays τ ± → μ ± μ + μ −, τ ± → e ± e + e −, τ ± → e ± μ + μ −, τ ± → μ ± e + e −, τ ± → e ∓ μ ± μ ±, τ ± → μ ∓ e ± e ± and μ ± → e ± e + e − and the Z 0 decays Z 0 → ℓ+iℓ−j are considered, taking into account all tree-level contributions.
Resumo:
The aim of our study is to compare the prevalence of illicit drug use estimated through a technique referred to as the “crosswise model” (CM) with the results from conventional direct questioning (DQ). Method: About 1,500 students from Tehran University of Medical Sciences 2009–2010 were first interviewed by DQ and, then three months later, by the CM. Result: The CM yielded significantly higher estimates than DQ for lifetime prevalence of use of any illicit drug (CM = 20.2%,DQ = 3.0%, p < .001) and for lifetime prevalence of use of opium or its residue (CM = 13.6%, DQ = 1.0%, p < .001). Also, for use of any illicit drug in the last month and use of opium or its residue in the last month, the CM yielded higher point estimates than DQ, although these differences were not significant (any drug: CM = 1.5%, DQ = 0.2%, p = .66; opium: CM = 3.8%, DQ = 0.0%, p = .21). Conclusion: Our findings suggest that the CM is a fruitful data collection method for sensitive topics such as substance abuse.
Sensitive Questions in Online Surveys: An Experimental Comparison of the RRT and the Crosswise Model
Resumo:
Self-administered online surveys provide a higher level of privacy protection to respondents than surveys administered by an interviewer. Yet, studies indicate that asking sensitive questions is problematic also in self-administered surveys. Because respondents might not be willing to reveal the truth and provide answers that are subject to social desirability bias, the validity of prevalence estimates of sensitive behaviors from online surveys can be challenged. A well-known method to overcome these problems is the Randomized Response Technique (RRT). However, convincing evidence that the RRT provides more valid estimates than direct questioning in online surveys is still lacking. A new variant of the RRT called the Crosswise Model has recently been proposed to overcome some of the deficiencies of existing RRT designs. We therefore conducted an experimental study in which different implementations of the RRT, including two implementations of the crosswise model, were tested and compared to direct questioning. Our study is a large-scale online survey (N = 6,037) on sensitive behaviors by students such as cheating in exams and plagiarism. Results indicate that the crosswise-model RRT---unlike the other variants of RRT we evaluated---yields higher prevalence estimates of sensitive behaviors than direct questioning. Whether higher estimates are a sufficient condition for more valid results, however, remains questionable.
Resumo:
In the present article, we argue that it may be fruitful to incorporate the ideas of the strength model of self-control into the core assumptions of the well-established attentional control theory (ACT). In ACT, it is assumed that anxiety automatically leads to attention disruption and increased distractibility, which may impair subsequent cognitive or perceptual-motor performance, but only if individuals do not have the ability to counteract this attention disruption. However, ACT does not clarify which process determines whether one can volitionally regulate attention despite experiencing high levels of anxiety. In terms of the strength model of self-control, attention regulation can be viewed as a self-control act depending on the momentary availability of self-control strength. We review literature that has revealed that self-control strength moderates the anxiety-performance relationship, discuss how to integrate these two theoretical models, and offer practical recommendations of how to counteract negative anxiety effects.
Resumo:
Simulating surface wind over complex terrain is a challenge in regional climate modelling. Therefore, this study aims at identifying a set-up of the Weather Research and Forecasting Model (WRF) model that minimises system- atic errors of surface winds in hindcast simulations. Major factors of the model configuration are tested to find a suitable set-up: the horizontal resolution, the planetary boundary layer (PBL) parameterisation scheme and the way the WRF is nested to the driving data set. Hence, a number of sensitivity simulations at a spatial resolution of 2 km are carried out and compared to observations. Given the importance of wind storms, the analysis is based on case studies of 24 historical wind storms that caused great economic damage in Switzerland. Each of these events is downscaled using eight different model set-ups, but sharing the same driving data set. The results show that the lack of representation of the unresolved topography leads to a general overestimation of wind speed in WRF. However, this bias can be substantially reduced by using a PBL scheme that explicitly considers the effects of non-resolved topography, which also improves the spatial structure of wind speed over Switzerland. The wind direction, although generally well reproduced, is not very sensitive to the PBL scheme. Further sensitivity tests include four types of nesting methods: nesting only at the boundaries of the outermost domain, analysis nudging, spectral nudging, and the so-called re-forecast method, where the simulation is frequently restarted. These simulations show that restricting the freedom of the model to develop large-scale disturbances slightly increases the temporal agreement with the observations, at the same time that it further reduces the overestimation of wind speed, especially for maximum wind peaks. The model performance is also evaluated in the outermost domains, where the resolution is coarser. The results demonstrate the important role of horizontal resolution, where the step from 6 to 2 km significantly improves model performance. In summary, the combination of a grid size of 2 km, the non-local PBL scheme modified to explicitly account for non-resolved orography, as well as analysis or spectral nudging, is a superior combination when dynamical downscaling is aimed at reproducing real wind fields.