74 resultados para Tethered-ligand
Resumo:
INTRODUCTION Erythema exsudativum multiforme majus (EEMM) and Stevens-Johnson Syndrome (SJS) are severe cutaneous reaction patterns caused by infections or drug hypersensitivity. The mechanism by which widespread keratinocyte death is mediated by the immune system in EEMM/SJS are still to be elucidated. Here, we characterized the blister cells isolated from a patient with EEMM/SJS overlap and investigated its cause. METHODS Clinical classification of the cutaneous eruption was done according to the consensus definition of severe blistering skin reactions and histological analysis. Common infectious causes of EEMM were investigated using standard clinical techniques. T cell reactivity for potentially causative drugs was assessed by lymphocyte transformation tests (LTT). Lymphocytes isolated from blister fluid were analyzed for their expression of activation markers and cytotoxic molecules using flow cytometry. RESULTS The healthy 58 year-old woman suffered from mild respiratory tract infection and therefore started treatment with the secretolytic drug Ambroxol. One week later, she presented with large palmar and plantar blisters, painful mucosal erosions, and flat atypical target lesions and maculae on the trunc, thus showing the clinical picture of an EEMM/SJS overlap (Fig. 1). This diagnosis was supported by histology, where also eosinophils were found to infiltrate the upper dermis, thus pointing towards a cutaneous adverse drug reaction (cADR). Analysis of blister cells showed that they mainly consisted of CD8+ and CD4+ T cells and a smaller population of NK cells. Both the CD8+ T cells and the NK cells were highly activated and expressed Fas ligand and the cytotoxic molecule granulysin (Fig. 2). In addition, in comparison to NK cells from PBMC, NK cells in blister fluids strongly upregulated the expression of the skin-homing chemokine receptor CCR4 (Fig 4). Surprisingly, the LTT performed on PBMCs in the acute phase was positive for Ambroxol (SI=2.9) whereas a LTT from a healthy but exposed individual did not show unspecific proliferation. Laboratory tests for common infectious causes of EEMM were negative (HSV-1/-2, M. pneumoniae, Parvovirus B19). However, 6 weeks later, specific proliferation to Ambroxol could no longer be observed in the LTT (Fig 4.).
Resumo:
BACKGROUND CONTEXT In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. PURPOSE To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. STUDY DESIGN/SETTING Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. PATIENT SAMPLE Seventy affected and 13 control (24 samples) dogs. OUTCOME MEASURES Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. METHODS Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. RESULTS Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). CONCLUSIONS The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue remodeling functions. These results will help to understand the pathogenic processes representing the basis for novel therapeutic approaches. The canine IVD disease model will be rewarding in this process.
Resumo:
The dynamic ligand exchange behavior of cationic arene ruthenium metalla-rectangles of the type [(pcymene) 4Ru4(OOXOO)2(NXN)2]4+ (OOXOO ¼ oxalato, 2,5-dioxydo-1,4-benzoquinonato, 5,8-dioxydo-1,4-naphthoquinonato; NXN ¼ 4,40-bipyridine-H8, 4,40-bipyridine-D8) has been studied in solution. The robustness of the rectangular architecture has been evidenced by NMR and ESI mass spectrometry. Thermodynamic and kinetic aspects of the ligand exchange process have been explored using 1H/2D isotope labeling of the 4,40-bipyridine connectors. This study shows that ligand exchange does not proceed spontaneously for these metalla-assemblies, even at high temperature, unless an external stimulus is applied.
Resumo:
A new series of cationic dinuclear arene ruthenium complexes bridged by three thiophenolato ligands, [(η6-arene)2Ru2(μ2-SR)3]+ with arene = indane, R = met: 1 (met = 4-methylphenyl); R = mco: 4 (mco = 4-methylcoumarin-7-yl); arene = biphenyl, R = met: 2; R = mco: 5; arene = 1,2,3,4-tetrahydronaphthalene, R = met: 3; R = mco: 6, have been prepared from the reaction of the neutral precursor [(η6-arene)Ru(μ2-Cl)Cl]2 and the corresponding thiophenol RSH. All cationic complexes have been isolated as chloride salts and fully characterized by spectroscopic and analytical methods. The molecular structure of 1, solved by X-ray structure analysis of a single crystal of the chloride salt, shows the two ruthenium atoms adopting a pseudo-octahedral geometry without metal–metal bond in accordance with the noble gas rule. All complexes are stable in H2O at 37 °C, but only 1 remains soluble in a 100 mM aqueous NaCl solution, while significant percentages (30–60 %) of 2–6 precipitate as chloride salts under these conditions. The 4-methylphenylthiolato complexes (R = met) are highly cytotoxic towards human ovarian cancer cells, the IC50 values being in the sub-micromolar range, while the 4-methylcoumarin-7-yl thiolato complexes (R = mco) are only slightly cytotoxic. Complexes 1 and 3 show the highest in vitro anticancer activity with IC50 values inferior to 0.06 μM for the A2780 cell line. The results demonstrate that the arene ligand is an important parameter that should be more systematically evaluated when designing new half-sandwich organometallic complexes.
Resumo:
BACKGROUND: Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI. METHODS: The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro. RESULTS: Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls. CONCLUSIONS: These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation.
Resumo:
BACKGROUND Detecting prostate cancer before spreading or predicting a favorable therapy are challenging issues for impacting patient's survival. Presently, 2-[(18) F]-fluoro-2-deoxy-D-glucose ((18) F-FDG) and/or (18) F-fluorocholine ((18) F-FCH) are the generally used PET-tracers in oncology yet do not emphasize the T877A androgen receptor (AR) mutation being exclusively present in cancerous tissue and escaping androgen deprivation treatment. METHODS We designed and synthesized fluorinated 5α-dihydrotestosterone (DHT) derivatives to target T877A-AR. We performed binding assays to select suitable candidates using COS-7 cells transfected with wild-type or T877A AR (WT-AR, T877A-AR) expressing plasmids and investigated cellular uptake of candidate (18) F-RB390. Stability, biodistribution analyses and PET-Imaging were assessed by injecting (18) F-RB390 (10MBq), with and without co-injection of an excess of unlabeled DHT in C4-2 and PC-3 tumor bearing male SCID mice (n = 12). RESULTS RB390 presented a higher relative binding affinity (RBA) (28.1%, IC50 = 32 nM) for T877A-AR than for WT-AR (1.7%, IC50 = 357 nM) related to DHT (RBA = 100%). A small fraction of (18) F-RB390 was metabolized when incubated with murine liver homogenate or human blood for 3 hr. The metabolite of RB390, 3-hydroxysteroid RB448, presented similar binding characteristics as RB390. (18) F-RB390 but not (18) F-FDG or (18) F-FCH accumulated 2.5× more in COS-7 cells transfected with pSG5AR-T877A than with control plasmid. Accumulation was reduced with an excess of DHT. PET/CT imaging and biodistribution studies revealed a significantly higher uptake of (18) F-RB390 in T877A mutation positive xenografts compared to PC-3 control tumors. This effect was blunted with DHT. CONCLUSION Given the differential binding capacity and the favorable radioactivity pattern, (18) F-RB390 represents the portrayal of the first imaging ligand with predictive potential for mutant T877A-AR in prostate cancer for guiding therapy. Prostate 75:348-359, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
The ligand 1,2-bis(1H-benzimidazol-2-yl)-1,2-ethanediol, 1, and its methylated derivative 2 are readily synthesized from tartaric acid, and act as chiral, facially coordinating tridentate ligands, forming complexes of composition ML2 with octahedral transition metals. The copper(II) complexes show distorted 4 + 2 coordination with benzimidazoles occupying the equatorial sites and alcohol functions weakly binding in the axial sites. Nickel(II) complexes in three different states of protonation show regular octahedral geometry with the alcohols mutually cis. Deprotonation of the coordinated alcohol produces little structural change but the monodeprotonated complex forms a hydrogen bonded dimer. Magnetic measurements show the hydrogen bonded bridge to offer a pathway for weak antiferromagnetic coupling. UV-Visible spectroscopy shows the ligand to have a field intermediate between water and pyridine. The diastereoselectivity of complexation depends on the geometry: nickel(II) shows a weak preference for the homochiral complex, whereas copper(II) forms almost exclusively homochiral complexes.