83 resultados para System of global interdependence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global complexity of spontaneous brain electric activity was studied before and after chewing gum without flavor and with 2 different flavors. One-minute, 19-channel, eyes-closed electroencephalograms (EEG) were recorded from 20 healthy males before and after using 3 types of chewing gum: regular gum containing sugar and aromatic additives, gum containing 200 mg theanine (a constituent of Japanese green tea), and gum base (no sugar, no aromatic additives); each was chewed for 5 min in randomized sequence. Brain electric activity was assessed through Global Omega (Ω)-Complexity and Global Dimensional Complexity (GDC), quantitative measures of complexity of the trajectory of EEG map series in state space; their differences from pre-chewing data were compared across gum-chewing conditions. Friedman Anova (p < 0.043) showed that effects on Ω-Complexity differed significantly between conditions and differences were maximal between gum base and theanine gum. No differences were found using GDC. Global Omega-Complexity appears to be a sensitive measure for subtle, central effects of chewing gum with and without flavor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The WOCAT network has collected, documented, and assessed more than 350 case studies on promising and good practices of SLM. Information on on- and off-site benefits of different SLM types, as well as on investment and maintenance costs is available, sometimes in quantitative and often in qualitative form. The objective of the present paper is to analyse what kind of economic benefits accrue to local stakeholders, and to better understand how these benefits compare to investment and maintenance costs. The large majority of the technologies contained in the database are perceived by land users as having positive benefits that outweigh costs in the long term. About three quarters of them also have positive or at least neutral benefits in the short term. The analysis shows that many SLM measures exist which can generate important benefits to land users, but also to other stakeholders. However, methodological issues need to be tackled and further quantitative and qualitative data are needed to better understand and support the adoption of SLM measures. Keywords: Sustainable Land Management, Costs, Benefits, Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the human connectome. Brain structural networks can be characterized by global and local metrics that recently gave promising insights for diagnosis and further understanding of neurological, psychiatric and neurodegenerative disorders. In order to ensure the validity of results in clinical settings the precision and repeatability of the networks and the associated metrics must be evaluated. In the present study, nineteen healthy subjects underwent two consecutive measurements enabling us to test reproducibility of the brain network and its global and local metrics. As it is known that the network topology depends on the network density, the effects of setting a common density threshold for all networks were also assessed. Results showed good to excellent repeatability for global metrics, while for local metrics it was more variable and some metrics were found to have locally poor repeatability. Moreover, between subjects differences were slightly inflated when the density was not fixed. At the global level, these findings confirm previous results on the validity of global network metrics as clinical biomarkers. However, the new results in our work indicate that the remaining variability at the local level as well as the effect of methodological characteristics on the network topology should be considered in the analysis of brain structural networks and especially in networks comparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios � which differ in fossil fuel and microbial emissions � to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Family change theory suggests three ideal-typical family models characterized by different combinations of emotional and material interdependencies in the family. Its major proposition is that in economically developing countries with a collectivistic background a family model of emotional interdependence emerges from a family model of complete interdependence. The current study aims to identify and compare patterns of family-related value orientations related to family change theory across three cultures and two generations. Overall, N = 919 dyads of mothers and their adolescent children from Germany, Turkey, and India participated in the study. Three clusters were identified representing the family models of independence, interdependence, and emotional interdependence, respectively. Especially the identification of an emotionally interdependent value pattern using a person-oriented approach is an important step in the empirical validation of family change theory. The preference for the three family models differed across as well as within cultures and generations according to theoretical predictions. Dyadic analyses pointed to substantial intergenerational similarities and also to differences in family models, reflecting both cultural continuity as well as change in family-related value orientations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Cultural diversity” has become one of the latest buzzwords on the international policymaking scene. It is employed in various contexts – sometimes as a term close to “biological diversity”, at other times as correlated to the “exception culturelle” and most often, as a generic concept that is mobilised to counter the perceived negative effects of economic globalisation. While no one has yet provided a precise definition of what cultural diversity is, what we can observe is the emergence of the notion of cultural diversity as incorporating a distinct set of policy objectives and choices at the global level. These decisions are not confined, as one might have expected, to cultural policymaking, but rather spill over to multiple governance domains because of the complex linkages inherent to the simultaneous pursuit of economic and other societal goals that cultural diversity encompasses and has effects on. Accounting for these intricate interdependencies, the present article clarifies the origins of the concept of cultural diversity as understood in global law and traces its evolution over time. Observing the dynamics of the concept and the surrounding political and legal developments, the article explores its justification and overall impact on the global legal regime, as well as its discrete effects on different domains of policymaking, such as media, intellectual property and culture. While the analysis is legal in essence, the article is meant to speak also to a broader transdisciplinary public. The article is part of the speacial issue on ethnic diversity and cultural pluralism, which is available under the creative commons licence: http://www.mdpi.com/journal/diversity/special_issues/ethnic-diversity/.