65 resultados para State of exception


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polar molecular crystals seem to contradict a quantum mechanical statement, according to which no stationary state of a system features a permanent electrical polarization. By stationary we understand here an ensemble for which thermal averaging applies. In the language of statistical mechanics we have thus to ask for the thermal expectation value of the polarization in molecular crystals. Nucleation aggregates and growing crystal surfaces can provide a single degree of freedom for polar molecules required to average the polarization. By means of group theoretical reasoning and Monte Carlo simulations we show that such systems thermalize into a bi-polar state featuring zero bulk polarity. A two domain, i.e. bipolar state is obtained because boundaries are setting up opposing effective electrical fields. Described phenomena can be understood as a process of partial ergodicity-restoring. Experimentally, a bi-polar state of molecular crystals was demonstrated using phase sensitive second harmonic generation and scanning pyroelectric microscopy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4′-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of [similar]70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of [similar]140 μm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into −P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of [similar]20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (DA), (AA), (DD) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article synthesizes findings from a review of the state of research on sustainable land management in Kyrgyzstan and Tajikistan and from an analysis of the interface between research and action. Using the Global Land Project (GLP 2005) analytical framework, we analyzed the distribution of 131 selected publications (including a clearly defined set of local and international academic and gray literature) across the framework's components and links in a social–ecological system. There is a strong emphasis in the literature on the impact of changes in land use and management on ecosystems; however, there is little research on the implications for ecosystem services. This finding is opposed to that of a similar analysis of publications at the global scale (Björnsen Gurung et al 2012). Another major gap was the lack of research on Kyrgyzstan and Tajikistan regarding the influence of global factors on social and ecological systems, despite social, economic, and political integration into global structures since the collapse of the Soviet Union and the increasing influence of climate change. Our analysis disaggregated academic literature published in the region and international academic literature, revealing stark differences. These differences are partly attributable to the legacy of the late Soviet era principle of “rational use of land resources,” which fit the planned economy but lacks approaches for decentralized resource governance. Finally, the emphasis of research on systems knowledge, the lack of transdisciplinary research, and the critical feedback of stakeholders at a regional sustainable land management forum suggest that actionable sustainable land management research on Kyrgyzstan and Tajikistan is rare. Recommendations are made for targeted, application-focused, multistakeholder research and knowledge sharing, including local and international researchers as well as practitioners, policy-makers, and land users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This progress report focuses on the contribution of tree-ring series to rockfall research and on recent development and challenges in the field. Dendrogeomorphic techniques have been used extensively since the early 2000s and several approaches have been developed to extract rockfall signals from tree-ring records of conifer trees. The reconstruction of rockfall chronologies has been hampered in the past by sample sizes that decrease as one goes back in time, as well as by a paucity of studies that include broadleaved tree species, which are in fact quite common in rockfall-prone environments. In this report, we propose a new approach considering impact probability and quantification of uncertainty in the reconstruction of rockfall time series as well as a quantitative estimate of presumably missed events. In addition, we outline new approaches and future perspectives for the inclusion of woody vegetation in hazard assessment procedures, and end with future thematic perspectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Emergency departments (EDs) are an essential component of any developed health care system. There is, however, no national description of EDs in Switzerland. Our objective was to establish the number and location of EDs, patient visits and flow, medical staff and organization, and capabilities in 2006, as a benchmark before emergency medicine became a subspecialty in Switzerland. METHODS In 2007, we started to create an inventory of all hospital-based EDs with a preliminary list from the Swiss Society of Emergency and Rescue Medicine that was improved with input from ED physicians nationwide. EDs were eligible if they offered acute care 24 h per day, 7 days per week. Our goal was to have 2006 data from at least 80% of all EDs. The survey was initiated in 2007 and the 80% threshold reached in 2012. RESULTS In 2006, Switzerland had a total of 138 hospital-based EDs. The number of ED visits was 1.475 million visits or 20 visits per 100 inhabitants. The median number of visits was 8,806 per year; 25% of EDs admitted 5,000 patients or less, 31% 5,001-10,000 patients, 26% 10,001-20,000 patients, and 17% >20,000 patients per year. Crowding was reported by 84% of EDs with >20,000 visits/year. Residents with limited experience provided care for 77% of visits. Imaging was not immediately available for all patients: standard X-ray within 15 min (70%), non-contrast head CT scan within 15 min (38%), and focused sonography for trauma (70%); 67% of EDs had an intensive care unit within the hospital, and 87% had an operating room always available. CONCLUSIONS Swiss EDs were significant providers of health care in 2006. Crowding, physicians with limited experience, and the heterogeneity of emergency care capabilities were likely threats to the ubiquitous and consistent delivery of quality emergency care, particularly for time-sensitive conditions. Our survey establishes a benchmark to better understand future improvements in Swiss emergency care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last two decades, imaging of the aorta has undergone a clinically relevant change. As part of the change non-invasive imaging techniques have replaced invasive intra-arterial digital subtraction angiography as the former imaging gold standard for aortic diseases. Computed tomography (CT) and magnetic resonance imaging (MRI) constitute the backbone of pre- and postoperative aortic imaging because they allow for imaging of the entire aorta and its branches. The first part of this review article describes the imaging principles of CT and MRI with regard to aortic disease, shows how both technologies can be applied in every day clinical practice, offering exciting perspectives. Recent CT scanner generations deliver excellent image quality with a high spatial and temporal resolution. Technical developments have resulted in CT scan performed within a few seconds for the entire aorta. Therefore, CT angiography (CTA) is the imaging technology of choice for evaluating acute aortic syndromes, for diagnosis of most aortic pathologies, preoperative planning and postoperative follow-up after endovascular aortic repair. However, radiation dose and the risk of contrast induced nephropathy are major downsides of CTA. Optimisation of scan protocols and contrast media administration can help to reduce the required radiation dose and contrast media. MR angiography (MRA) is an excellent alternative to CTA for both diagnosis of aortic pathologies and postoperative follow-up. The lack of radiation is particularly beneficial for younger patients. A potential side effect of gadolinium contrast agents is nephrogenic systemic fibrosis (NSF). In patients with high risk of NSF unenhanced MRA can be performed with both ECG- and breath-gating techniques. Additionally, MRI provides the possibility to visualise and measure both dynamic and flow information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcatheter aortic valve replacement (TAVR) as well as thoracic and abdominal endovascular aortic repair (TEVAR and EVAR) rely on accurate pre- and postprocedural imaging. This review article discusses the application of imaging, including preprocedural assessment and measurements as well as postprocedural imaging of complications. Furthermore, the exciting perspective of computational fluid dynamics (CFD) based on cross-sectional imaging is presented. TAVR is a minimally invasive alternative for treatment of aortic valve stenosis in patients with high age and multiple comorbidities who cannot undergo traditional open surgical repair. Given the lack of direct visualization during the procedure, pre- and peri-procedural imaging forms an essential part of the intervention. Computed tomography angiography (CTA) is the imaging modality of choice for preprocedural planning. Routine postprocedural follow-up is performed by echocardiography to confirm treatment success and detect complications. EVAR and TEVAR are minimally invasive alternatives to open surgical repair of aortic pathologies. CTA constitutes the preferred imaging modality for both preoperative planning and postoperative follow-up including detection of endoleaks. Magnetic resonance imaging is an excellent alternative to CT for postoperative follow-up, and is especially beneficial for younger patients given the lack of radiation. Ultrasound is applied in screening and postoperative follow-up of abdominal aortic aneurysms, but cross-sectional imaging is required once abnormalities are detected. Contrast-enhanced ultrasound may be as sensitive as CTA in detecting endoleaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the resting state of cytochrome P450cam (CYP101), a heme thiolate protein, shows a cluster of six water molecules in the substrate binding pocket, one of which is coordinating to iron(III) as sixth ligand. The resting state is low-spin and changes to high-spin when substrate camphor binds and H2O is removed. In contrast to the protein, previously synthesised enzyme models such as H2O[BOND]FeIII(porph)(ArS−) were shown to be purely high-spin. Iron(S−)porphyrins with different distal sites mimicking proposed remote effects have been prepared and studied by cw-EPR. The results indicate that the low-spin of the resting state of P450cam is due to the fact that the water molecule coordinating to iron has an OH−-like character because of hydrogen bonding and polarisation of the water cluster, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crown-capped iron(S−) porphyrins 1·H2O and 2·H2O and their corresponding Ba2+ complexes have been prepared as active site analogues of the resting state of cytochrome P450cam. cw-EPR studies and electronic structure calculations at the density functional theory (DFT) level of model systems suggest a functional role of the water cluster of P450cam.