53 resultados para Spatial Data Infrastructures (SDI)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New pollen based reconstructions of summer (May-to-August) and winter (December-to-February) temperatures between 15 and 8 ka BP along a S-N transect in the Baltic-Belarus (BB) area display trends in temporal and spatial changes in climate variability. These results are completed by two chironomid-based July mean temperature reconstructions. The magnitude of change compared with modern temperatures was more prominent in the northern part of BB area. The 4 C degrees winter and 2 C degrees summer warming at the start of GI-1 was delayed in the BB area and Lateglacial maximum temperatures were reached at ca 13.6 ka BP, being 4 C degrees colder than the modern mean. The Younger Dryas cooling in the area was 5 C degrees colder than present, as inferred by all proxies. In addition, our analyses show an early Holocene divergence in winter temperature trends with modern values reaching 1 ka earlier (10 ka BP) in southern BB compared to the northern part of the region (9 ka BP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems for the identification and registration of cattle have gradually been receiving attention for use in syndromic surveillance, a relatively recent approach for the early detection of infectious disease outbreaks. Real or near real-time monitoring of deaths or stillbirths reported to these systems offer an opportunity to detect temporal or spatial clusters of increased mortality that could be caused by an infectious disease epidemic. In Switzerland, such data are recorded in the "Tierverkehrsdatenbank" (TVD). To investigate the potential of the Swiss TVD for syndromic surveillance, 3 years of data (2009-2011) were assessed in terms of data quality, including timeliness of reporting and completeness of geographic data. Two time-series consisting of reported on-farm deaths and stillbirths were retrospectively analysed to define and quantify the temporal patterns that result from non-health related factors. Geographic data were almost always present in the TVD data; often at different spatial scales. On-farm deaths were reported to the database by farmers in a timely fashion; stillbirths were less timely. Timeliness and geographic coverage are two important features of disease surveillance systems, highlighting the suitability of the TVD for use in a syndromic surveillance system. Both time series exhibited different temporal patterns that were associated with non-health related factors. To avoid false positive signals, these patterns need to be removed from the data or accounted for in some way before applying aberration detection algorithms in real-time. Evaluating mortality data reported to systems for the identification and registration of cattle is of value for comparing national data systems and as a first step towards a European-wide early detection system for emerging and re-emerging cattle diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to develop a pictorial presence scale using selfassessment- manikins (SAM). The instrument assesses presence sub-dimensions (selflocation and possible actions) as well as presence determinants (attention allocation, spatial situation model, higher cognitive involvement, and suspension of disbelief). To qualitatively validate the scale, think-aloud protocols and interviews (n = 12) were conducted. The results reveal that the SAM items are quickly filled out as well as easily, intuitively, and unambiguously understood. Furthermore, the instrument’s validity and sensitivity was quantitatively examined in a two-factorial design (n = 317). Factors were medium (written story, audio book, video, and computer game) and distraction (non-distraction vs. distraction). Factor analyses reveal that the SAM presence dimensions and determinants closely correspond to those of the MEC Spatial Presence Questionnaire, which was used as a comparison measure. The findings of the qualitative and quantitative validation procedures show that the Pictorial Presence SAM successfully assesses spatial presence. In contrast to the verbal questionnaire data (MEC), the significant distraction effect suggests that the new scale is even more sensitive. This points out that the scale can be a useful alternative to existing verbal presence selfreport measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. RESULTS HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. CONCLUSIONS The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.