73 resultados para Solar-system
Resumo:
Comets are thought to be the most pristine bodies present in the Solar System. In consequence of spending the majority of their existence beyond 30 AU, their composition can give insights on the physical and chemical conditions during their formation. Since August 2014 the European Space Agency spacecraft Rosetta accompanies the Jupiter family comet 67P/Churyumov-Gerasimenko on its way to perihelion and beyond. In this study the isotope fractionation of 34S are reported in H2S, OCS, SO2, S2, and CS2 at 67P. In addition for the first time the isotope fractionation for 33S is presented for cometary volatiles. The ratio 32S/33S is given for H2S, SO2 and a tentative value is given for CS2. With a mean value of -50 ± 22‰ and -306 ± 31‰ for δ34S and δ33S respectively, H2S shows a significant depletion in both 34S and 33S. For SO2 the depletion is less distinct with δ34S and δ33S being -67 ± 40‰ and -130 ± 53‰, respectively. The strongest depletion is present for CS2 with -114 ± 21‰and -276 ± 55‰, respectively. For OCS and S2 only δ34S could be determined which is -252 ± 77‰ and -357 ± 145‰, respectively. A comparison with sulfur isotopic ratios measured in SiC grains revealed that both SiC grains and the five volatile species have similar sulfur isotopic ratios. However, it is beyond the scope of this work to investigate the possibility of a link between SiC grains and cometary ices. Nevertheless, mass-dependent or mass-independent fractionation due to photo dissociation can be ruled out as sole cause of the seen depletion of 33S and 34S. Furthermore, an upper limit of (9.64 ± 0.19)·10.4 for D/H in HDS has been determined. This value is about a factor two higher than D/H in H2O for the same comet reported by (Altwegg et al., 2015). Besides the investigation concerning isotopic ratios of sulfur bearing species in this work the calibration and characterization of ROSINA/DFMS has been continued. Here it is reported about the deviation of the mass scale for MCP/LEDA low resolution spectra and the calibration measurements performed in the laboratory. Furthermore the outcome of the attempt to describe the sensitivity of DFMS with an empirical function will be discussed. The last part of the characterization of DFMS is dedicated to determine the so-called individual pixel gain for the laboratory and the flight model. Moreover, correlation between the depletion’s manifestation of the MCP with respect to the applied voltages has been investigated for both models. It has been found that further measurements are needed to understand the manifestation of depletion at the laboratory model. For the model on board of Rosetta it could be shown that most of the present feature are due to the usage of the MCP and suggestions have been made in order to answer the remaining question considering the depletion of the MCP.
Resumo:
Context. The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment. Aims. During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects' possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet's environment. Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere. Results. We found no unambiguous detections of objects larger than similar to 6 m within similar to 20 km and larger than similar to 1 m between similar to 20 km and similar to 110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface. Moreover, our analysis shows that the comet outburst detected at the end of April 2014 was not strong enough to eject large objects and to place them into a stable orbit around the nucleus. Our findings underline that it is highly unlikely that large objects survive for a long time around cometary nuclei.
Resumo:
Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.
Resumo:
Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
Resumo:
The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary(1,2) and primordial processes(3,4). The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes(5). Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.
Resumo:
The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, beta-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(alpha,n)25Mg neutron source for the solar system s-process.
Resumo:
We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko's subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko's lifetime in the comet's activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of increasing gas pressure in the pores, while high porosity should allow the formation of large voids in the subsurface due to the continuous escape of volatiles. We finally conclude that the subsurface of 67P/Churyumov-Gerasimenko is not uniform at a spatial scale of similar to 100-200 m.
Resumo:
An obstacle for establishing the chronology of iron meteorite formation using 182Hf-182W systematics (t1/2 = 8.9 Myr) is to find proper neutron fluence monitors to correct for cosmic ray modification of W isotopic composition. Recent studies showed that siderophile elements such as Pt and Os could serve such a purpose. To test and calibrate these neutron dosimeters, the isotopic compositions of W and Os were measured in a slab of the IID iron meteorite Carbo. This slab has a well-characterized noble gas depth profile reflecting different degrees of shielding to cosmic rays. The results show that W and Os isotopic ratios correlate with distance from the pre-atmospheric center. Negative correlations, barely resolved within error, were found between epsilo190Os-epsilo189Os and epsilo186Os-epsilo189Os with slopes of -0.64 ± 0.45 and -1.8(+1.9/-2.1), respectively. These Os isotope correlations broadly agree with model predictions for capture of secondary neutrons produced by cosmic ray irradiation and results reported previously for other groups of iron meteorites. Correlations were also found between epsilo182W-epsilo189Os (slope = 1.02 ± 0.37) and epsilo182W-epsilo190Os (slope = -1.38 ± 0.58). Intercepts of these two correlations yield pre-exposure epsilo182W values of -3.32 ± 0.51 and -3.62 ± 0.23, respectively (weighted average epsilo182W = -3.57 ± 0.21). This value relies on a large extrapolation leading to a large uncertainty but gives a metal-silicate segregation age of -0.5 ± 2.4 Myr after formation of the solar system. Combining the iron meteorite measurements with simulations of cosmogenic effects in iron meteorites, equations are presented to calculate and correct for cosmogenic effects on 182W using Os isotopes.
Resumo:
Context. One of the main aims of the ESA Rosetta mission is to study the origin of the solar system by exploring comet 67P/Churyumov-Gerasimenko at close range. Aims. In this paper we discuss the origin and evolution of comet 67P/Churyumov-Gerasimenko in relation to that of comets in general and in the framework of current solar system formation models. Methods. We use data from the OSIRIS scientific cameras as basic constraints. In particular, we discuss the overall bi-lobate shape and the presence of key geological features, such as layers and fractures. We also treat the problem of collisional evolution of comet nuclei by a particle-in-a-box calculation for an estimate of the probability of survival for 67P/Churyumov-Gerasimenko during the early epochs of the solar system. Results. We argue that the two lobes of the 67P/Churyumov-Gerasimenko nucleus are derived from two distinct objects that have formed a contact binary via a gentle merger. The lobes are separate bodies, though sufficiently similar to have formed in the same environment. An estimate of the collisional rate in the primordial, trans-planetary disk shows that most comets of similar size to 67P/Churyumov-Gerasimenko are likely collisional fragments, although survival of primordial planetesimals cannot be excluded. Conclusions. A collisional origin of the contact binary is suggested, and the low bulk density of the aggregate and abundance of volatile species show that a very gentle merger must have occurred. We thus consider two main scenarios: the primordial accretion of planetesimals, and the re-accretion of fragments after an energetic impact onto a larger parent body. We point to the primordial signatures exhibited by 67P/Churyumov-Gerasimenko and other comet nuclei as critical tests of the collisional evolution.
Resumo:
Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 +/- 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.
Resumo:
In this paper, we simulate numerically the catastrophic disruption of a large asteroid as a result of a collision with a smaller projectile and the subsequent reaccumulation of fragments as a result of their mutual gravitational attractions. We then investigate the original location within the parent body of the small pieces that eventually reaccumulate to form the largest offspring of the disruption as a function of the internal structure of the parent body. We consider four cases that may represent the internal structure of such a body (whose diameter is fixed at 250 km) in various early stages of the Solar System evolution: fully molten, half molten (i.e., a 26 km-deep outer layer of melt containing half of the mass), solid except a thin molten layer (8 km thick) centered at 10 km depth, and fully solid. The solid material has properties of basalt. We then focus on the three largest offspring that have enough reaccumulated pieces to consider. Our results indicate that the particles that eventually reaccumulate to form the largest reaccumulated bodies retain a memory of their original locations in the parent body. Most particles in each reaccumulated body are clustered from the same original region, even if their reaccumulations take place far away. The extent of the original region varies considerably depending on the internal structure of the parent. It seems to shrink with the solidity of the body. The fraction of particles coming from a given depth is computed for the four cases, which can give constraints on the internal structure of parent bodies of some meteorites. As one example, we consider the ureilites, which in some petrogenetic models are inferred to have formed at particular depths within their parent body. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.
Resumo:
Are there planets beyond our solar system? What may appear quite plausible now had only been a hypothesis until about twenty years ago. The search for exoplanets is driven by the interest in the “habitable” ones among them. Could such planets one day in the far future provide resources or even shelter for humankind? Will we find one day a habitable planet that is even inhabited? These kinds of imaginative speculations drive public interest in the subject. Imagining alien intelligent life in the universe is not at all new. When Ted Peters called for establishing the field of “astrotheology,” he was certainly thinking less of historical precedents than of something analogous to the emerging field of astrobiology. Will astrotheology result in the decentering of humanity in cosmic dimensions? One could also conclude that we are alone, at least for all practical purposes.
Resumo:
Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds-methyl isocyanate, acetone, propionaldehyde, and acetamide-that had not previously been reported in comets.