49 resultados para Society of Friends New England Yearly Meeting.
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.
Resumo:
The evaluation for European Union market approval of coronary stents falls under the Medical Device Directive that was adopted in 1993. Specific requirements for the assessment of coronary stents are laid out in supplementary advisory documents. In response to a call by the European Commission to make recommendations for a revision of the advisory document on the evaluation of coronary stents (Appendix 1 of MEDDEV 2.7.1), the European Society of Cardiology (ESC) and the European Association of Percutaneous Cardiovascular Interventions (EAPCI) established a Task Force to develop an expert advisory report. As basis for its report, the ESC-EAPCI Task Force reviewed existing processes, established a comprehensive list of all coronary drug-eluting stents that have received a CE mark to date, and undertook a systematic review of the literature of all published randomized clinical trials evaluating clinical and angiographic outcomes of coronary artery stents between 2002 and 2013. Based on these data, the TF provided recommendations to inform a new regulatory process for coronary stents. The main recommendations of the task force include implementation of a standardized non-clinical assessment of stents and a novel clinical evaluation pathway for market approval. The two-stage clinical evaluation plan includes recommendation for an initial pre-market trial with objective performance criteria (OPC) benchmarking using invasive imaging follow-up leading to conditional CE-mark approval and a subsequent mandatory, large-scale randomized trial with clinical endpoint evaluation leading to unconditional CE-mark. The data analysis from the systematic review of the Task Force may provide a basis for determination of OPC for use in future studies. This paper represents an executive summary of the Task Force's report.
Resumo:
Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation.