147 resultados para Sepsis neonatal
Resumo:
OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.
Resumo:
The gastrointestinal tract of neonatal calves is relatively mature but still requires morphological and functional changes. The intake of colostrum with its nutrient and non-nutrient components exerts marked effects on gastrointestinal development and function. Colostrum intake provides immunoprotection (passive immunity by immunoglobulins) and is essential for survival of neonates of most species. Furthermore, there are important transient as well as long-lasting systemic effects on the nutritional status, on metabolism, and on various endocrine systems due to intake of nutrient and non-nutrient colostral components that contribute to survival in the stressful postnatal period. Colostrum is much more than just a supplier of immunoglobulins.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
BACKGROUND: Plasminogen activator inhibitor type-1 (PAI-1) is considered to be the main inhibitor of fibrinolysis in sepsis. However, the contribution of TAFI to the inhibition of fibrinolysis in sepsis is currently unknown. METHODS: TAFI antigen and PAI-1 levels were measured in severe sepsis (n = 32) and septic shock (n = 8) patients. In addition, TAFI antigen levels had been determined in 151 controls. RESULTS: Septic patients had significantly (p < 0.0001) decreased TAFI levels (median: 78.9% [range: 32.4-172.6]) as compared to controls (108.1% [35.9-255.4]). TAFI levels were equal in septic shock and severe sepsis (68.9% [32.4-172.6] vs. 82.5% [32.7-144.9], p = 0.987) as well as in survivors and non-survivors (87.1% [32.7-172.6] vs. 65.8% [32.4-129.5], p = 0.166). PAI-1 levels were significantly (705.5 ng/ml [131-5788]) higher in septic shock as in severe sepsis patients (316.5 ng/ml [53-1311], p = 0.016) and were equal in survivors and non-survivors (342 ng/ml [53-1311] vs. 413 ng/ml [55-5788], p = 0.231). TAT/PAP ratio (R((TAT/PAP))) reflecting the dysbalance between coagulation and fibrinolysis was calculated. R((TAT/PAP)) significantly increased with fatality and was significantly dependent on PAI-1, but not on TAFI. PAI-1 levels (570.5 ng/ml [135-5788]) and R((TAT/PAP)) (1.6 [0.3-6.1]) were significantly (p = 0.008 and p = 0.047) higher in patients with overt DIC as compared to patients without overt DIC (310 ng/ml [53-1128] and 0.6 [0.1-4.3]), whereas no difference was found for TAFI levels (68.9% [32.7-133.2] vs. 86.4% [32.4-172.6], p = 0.325). CONCLUSIONS: Although inhibition in sepsis is mediated by both, PAI-1 might be involved early in the sepsis process, whereas TAFI might be responsible for ongoing fibrinolysis inhibition in later stages of sepsis.
Resumo:
We evaluated the score for disseminated intravascular coagulation (DIC) recently published by the International Society for Thrombosis and Haemostasis (ISTH) in a well-defined series of sepsis patients. Thirty-two patients suffering from severe sepsis and eight patients with septic shock were evaluated following the ISTH DIC score. Fibrin monomer and D-dimer were chosen as fibrin-related markers (FRM), respectively. DIC scores for nonsurvivors (n = 13) as well as for septic shock patients were higher (P < 0.04) compared with survivors and patients with severe sepsis, respectively. Using fibrin monomer and D-dimer, 30 and 25% of patients suffered from overt DIC. Overt DIC was associated with significantly elevated thrombin-antithrombin complexes and plasminogen activator inhibitor type-1 levels as well as with significantly lower factor VII clotting activity. Patients with overt DIC had a significantly higher risk of death and of developing septic shock. Since more than 95% of the sepsis patients had elevated FRM, the DIC score was strongly dependent on prolongation of the prothrombin time and platelet counts. The ISTH DIC score is useful to identify patients with coagulation activation, predicting fatality and disease severity. It mainly depends on the prolongation of the prothrombin time and platelet counts.
Resumo:
The neonatal rat brain is vulnerable to neuronal apoptosis induced by antiepileptic drugs (AEDs), especially when given in combination. This study evaluated lamotrigine alone or in combination with phenobarbital, phenytoin, or the glutamate antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) for a proapoptotic action in the developing rat brain. Cell death was assessed in brain regions (striatum, thalamus, and cortical areas) of rat pups (postnatal day 8) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, 24 h after acute drug treatment. Lamotrigine alone did not increase neuronal apoptosis when given in doses up to 50 mg/kg; a significant increase in cell death occurred after 100 mg/kg. Combination of 20 mg/kg lamotrigine with 0.5 mg/kg MK-801 or 75 mg/kg phenobarbital resulted in a significant increase in TUNEL-positive cells, compared with MK-801 or phenobarbital treatment alone. A similar enhancement of phenytoin-induced cell death occurred after 30 mg/kg lamotrigine. In contrast, 20 mg/kg lamotrigine significantly attenuated phenytoin-induced cell death. Lamotrigine at 10 mg/kg was without effect on apoptosis induced by phenytoin. Although the functional and clinical implications of AED-induced developmental neuronal apoptosis remain to be elucidated, our finding that lamotrigine alone is devoid of this effect makes this drug attractive as monotherapy for the treatment of women during pregnancy, and for preterm or neonatal infants. However, because AEDs are often introduced as add-on medication, careful selection of drug combinations and doses may be required to avoid developmental neurotoxicity when lamotrigine is used in polytherapy.
Resumo:
Previous studies have shown that the gating kinetics of the slow component of the delayed rectifier K(+) current (I(Ks)) contribute to postrepolarization refractoriness in isolated cardiomyocytes. However, the impact of such kinetics on arrhythmogenesis remains unknown. We surmised that expression of I(Ks) in rat cardiomyocyte monolayers contributes to wavebreak formation and facilitates fibrillatory conduction by promoting postrepolarization refractoriness. Optical mapping was performed in 44 rat ventricular myocyte monolayers infected with an adenovirus carrying the genomic sequences of KvLQT1 and minK (molecular correlates of I(Ks)) and 41 littermate controls infected with a GFP adenovirus. Repetitive bipolar stimulation was applied at increasing frequencies, starting at 1 Hz until loss of 1:1 capture or initiation of reentry. Action potential duration (APD) was significantly shorter in I(Ks)-infected monolayers than in controls at 1 to 3 Hz (P<0.05), whereas differences at higher pacing frequencies did not reach statistical significance. Stable rotors occurred in both groups, with significantly higher rotation frequencies, lower conduction velocities, and shorter action potentials in the I(Ks) group. Wavelengths in the latter were significantly shorter than in controls at all rotation frequencies. Wavebreaks leading to fibrillatory conduction occurred in 45% of the I(Ks) reentry episodes but in none of the controls. Moreover, the density of wavebreaks increased with time as long as a stable source sustained the fibrillatory activity. These results provide the first demonstration that I(Ks)-mediated postrepolarization refractoriness can promote wavebreak formation and fibrillatory conduction during pacing and sustained reentry and may have important implications in tachyarrhythmias.
Resumo:
Neonatal cattle and in part neonates of other species have manyfold higher plasma concentrations of nitrite plus nitrate than mature cows and subjects of other species, suggesting an enhanced and needed activation of the nitric oxide (NO) axis at birth. While the biological half-life of NO is short (<1 sec), its functionality can be prolonged, and in many regards more discretely modulated, when it reacts with low-molecular-weight and protein-bound thiols to form S-nitrosothiols (RSNO), from which NO subsequently can be rereleased. We used the calf as a model to test the hypothesis that plasma concentrations of RSNO are elevated at birth in mammals, correlate with ascorbate and urate levels, are selectively generated in critical tissue beds, and are generated in a manner temporally coincident with changes in tissue levels of active NO synthases (NOS). Plasma concentrations of RSNO, ascorbate, and urate were highest immediately after birth (Day 0), dropped >50% on Day 1, and gradually decreased over time, reaching a nadir in mature cattle. Albumin and immunoglobulin G were identified as major plasma RSNO. The presence of S-nitrosocysteine (SNC, a validated marker for S-nitrosylated proteins), inducible NOS (iNOS), and activated endothelial NOS (eNOS phosphorylated at Ser1177) in different tissues was analyzed by immunohistochemistry in another group of similar-aged calves. SNC, iNOS, and phosphorylated eNOS were detected in liver and ileum at the earliest timepoint of sampling (4 hrs after birth), increased between 4 and 24 hrs, and then declined to near-nondetectable levels by 2 weeks of life. Our data show that the neonatal period in the bovine species is characterized by highly elevated and coordinated NO-generating and nitrosylation events, with the ontogenetic changes occurring in iNOS and eNOS contents in key tissues as well as RSNO products and associated antioxidant markers.
Resumo:
Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.
Resumo:
BACKGROUND: Insufficient control of von Willebrand factor (VWF) multimer size as a result of severely deficient ADAMTS-13 activity results in thrombotic thrombocytopenic purpura associated with microvascluar thrombosis and platelet consumption, features not seldom seen in severe sepsis and septic shock. METHODS: ADAMTS-13 activity and VWF parameters of 40 patients with severe sepsis or septic shock were compared with those of 40 healthy controls of the same age and gender and correlated with clinical findings and sepsis outcome. RESULTS: ADAMTS-13 activity was significantly lower in patients than in healthy controls [median 60% (range 27-160%) vs. 110% (range 63-200%); P < 0.001]. VWF parameters behaved reciprocally and both VWF ristocetin cofactor activity (RCo) and VWF antigen (VWF:Ag) were significantly (P < 0.001) higher in patients compared with controls. Neither ADAMTS-13 activity nor VWF parameters correlated with disease severity, organ dysfunction or outcome. However, a contribution of acute endothelial dysfunction to renal impairment in sepsis is suggested by the significantly higher VWF propeptide and soluble thrombomodulin levels in patients with increased creatinine values as well as by their strong positive correlations (creatinine and VWF propeptide r(s) = 0.484, P < 0.001; creatinine and soluble thrombomodulin r(s) = 0.596, P < 0.001). CONCLUSIONS: VWF parameters are reciprocally correlated with ADAMTS-13 activity in severe sepsis and septic shock but have no prognostic value regarding outcome.
Resumo:
OBJECTIVE: In sepsis, activation of coagulation and inhibition of fibrinolysis lead to microvascular thrombosis. Thus, clot stability might be a critical issue in the development of multiple organ dysfunction syndrome. Activated FXIII (FXIIIa) forms stable fibrin clots by covalently cross-linking fibrin monomers. Therefore, we investigated the impact of FXIII antigen and activity levels on disease severity and fatality in sepsis patients. PATIENTS AND METHODS: FXIII subunit A (FXIIIA) and FXIII cross-linking activity (FXIIICA) were measured in 151 controls, in 32 patients with severe sepsis and 8 with septic shock. In addition, FXIII subunit B (FXIIIB) was measured in the sepsis patients. Moreover, clotting parameters were determined. RESULTS: Patients suffering from sepsis (n=40) had significantly (p<0.005) lower FXIIIA levels (median [range]: 36.5% [8.8-127.4%]) and FXIIICA levels (76.5% [9.4-266%]) as compared to healthy controls (n=151, 119% [31.3-283.2] and 122.4% [40.6-485.3], respectively). No difference in FXIIIA, FXIIIB and FXIIICA levels between survivors and non-survivors, nor between patients with severe sepsis and septic shock was found. The specific activity of FXIII (FXIIICA/FXIIIA, SA(FXIII)) was significantly (p<0.001) higher in sepsis patients (2.0 [0.8-5.3]) as compared to healthy controls (1.0 [0.4-5.1]). SA(FXIII) significantly (p<0.05) increased with fatality (non-survivors [n=13] vs. survivors [n=27]: 3.3 [1.2-5.0] vs. 1.9 [0.8-5.3]) and disease severity (septic shock vs. severe sepsis: 3.4 [1.8-4.3] vs. 1.9 [0.8-5.3]). CONCLUSION: We show decreased FXIIICA and FXIIIA levels, but higher SA(FXIII) in sepsis as compared to controls. Increased SA(FXIII) correlates with disease severity and fatality in sepsis patients.
Resumo:
Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However, glutathione peroxidase 1 (GPx1) over-expression is protective to the neonatal mouse brain with HI injury. To further test the hypothesis that an adequate supply of GPx is critical to protection from HI injury, we crossed SOD1 over-expressing mice (hSOD-tg) with GPx1 over-expressing mice (hGPx-tg). Resulting litters contained wild-type (wt), hGPx-tg, hSOD-tg and hybrid hGPx-tg/hSOD-tg pups, which were subjected to HI at P7. Confirming previous results, the hGPx-tg mice had reduced injury compared to both Wt and hSOD-tg littermates. Neonatal mice over-expressing both GPx1 and SOD1 also had less injury compared to wt or hSOD-tg alone. A result of oxidative stress after neonatal HI is a decrease in the concentration of reduced (i.e. antioxidant-active) glutathione (GSH). In this study, we tested the effect of systemic administration of alpha-lipoic acid on levels of GSH in the cortex after HI. Although GSH levels were restored by 24h after HI, injury was not reduced compared to vehicle-treated mice. We also tested two other pharmacological approaches to reducing oxidative stress in hSOD-tg and wild-type littermates. Both the specific inhibitor of neuronal nitric oxide synthase, 7-nitroindazole (7NI), and the spin-trapping agent alpha-phenyl-tert-butyl-nitrone (PBN) did not reduce HI injury, however. Taken together, these results imply that H2O2 is a critical component of neonatal HI injury, and GPx1 plays an important role in the defense against this H2O2 and is thereby neuroprotective.
Resumo:
The effect of hypoxic preconditioning (PC) on hypoxic-ischemic (HI) injury was explored in glutathione peroxidase (GPx)-overexpressing mice (human GPx-transgenic [hGPx-tg]) mice. Six-day-old hGPx-tg mice and wild-type (Wt) littermates were pre-conditioned with hypoxia for 30 min and subjected to the Vannucci procedure of HI 24 h after the PC stimulus. Histopathological injury was determined 5 d later (P12). Additional animals were killed 2 h or 24 h after HI and ipsilateral cerebral cortices assayed for GPx activity, glutathione (GSH), and hydrogen peroxide (H2O2). In line with previous studies, hypoxic PC reduced injury in the Wt brain. Preconditioned Wt brain had increased GPx activity, but reduced GSH, relative to naive 24 h after HI. Hypoxic PC did not reduce injury to hGPx-tg brain and even reversed the protection previously reported in the hGPx-tg. GPx activity and GSH in hGPx-tg cortices did not change. Without PC, hGPx-tg cortex had less H2O2 accumulation than Wt at both 2 h and 24 h. With PC, H2O2 remained low in hGPx-tg compared with Wt at 2 h, but at 24 h, there was no longer a difference between hGPx-tg and Wt cortices. Accumulation of H2O2 may be a mediator of injury, but may also induce protective mechanisms.
Resumo:
BACKGROUND: Painful invasive procedures are frequently performed on preterm infants admitted to a neonatal intensive care unit (NICU). The aim of the present study was to investigate current pain management in Austrian, German and Swiss NICU and to identify factors associated with improved pain management in preterm infants. METHODS: A questionnaire was sent to all Austrian, German and Swiss pediatric hospitals with an NICU (n = 370). Pain assessment and documentation, use of analgesics for 13 painful procedures, presence of written guidelines for pain management and the use of 12 analgesics and sedatives were examined. RESULTS: A total of 225 units responded (61%). Pain assessment and documentation and frequent analgesic therapy for painful procedures were performed more often in units using written guidelines for pain management and in those treating >50 preterm infants at <32 weeks of gestation per year. This was also the case for the use of opioid analgesics and sucrose solution. Non-opioid analgesics were used more often in smaller units and in units with written guidelines. There was a broad variation in dosage of analgesics and sedatives within all groups. CONCLUSION: Pain assessment, documentation of pain and analgesic therapy are more frequently performed in NICU with written guidelines for pain management and in larger units with more than 50 preterm infants at <32 weeks of gestation per year.