49 resultados para Scalable Intelligence
Resumo:
Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.
Resumo:
The psychological refractory period (PRP) refers to a delay of response times (RT) to the second of two stimuli when these stimuli are presented in rapid succession. If this limitation of rapidly processing the second stimulus contributes to the well-known differences in speed of information processing between individuals with higher and lower mental ability, individuals with lower mental ability should exhibit a more pronounced PRP effect than individuals with higher mental ability. Previous studies on this question, however, yielded inconsistent results. In the present study, we assessed mental ability-related differences in the PRP by measuring lateralized readiness potentials (LRPs) to separate premotor and motor aspects of speed of information processing in 95 individuals with higher and 95 individuals with lower mental ability. Although individuals with higher mental ability processed information faster than individuals with lower mental ability as indicated by shorter RTs and shorter premotor LRP latencies, the PRP effect was equally pronounced in both groups. These findings suggest that the processes underlying the PRP effect do not contribute to mental ability-related differences in speed of information processing. Rather, these differences seem to occur at an earlier stage of information processing such as stimulus encoding, stimulus analysis, or stimulus evaluation.
Resumo:
The mental speed approach explains individual differences in intelligence by faster information processing in individuals with higher compared to lower intelligence - especially in elementary cognitive tasks (ECTs). One of the most examined ECTs is the Hick paradigm. The present study aimed to contrast reaction time (RT) and P3 latency in a Hick task as predictors of intelligence. Although both, RT and P3 latency, are commonly used as indicators of mental speed, it is also known that they measure different aspects of information processing. Participants were 113 female students. RT and P3 latency were measured while participants completed the Hick task with four levels of complexity. Intelligence was assessed with Cattell's Culture Fair Test. A RT factor and a P3 factor were extracted by employing a PCA across complexity levels. There was no significant correlation between the factors. Commonality analysis was used to determine the proportions of unique and shared variance in intelligence explained by the RT and P3 latency factors. RT and P3 latency explained 5.5% and 5% of unique variance in intelligence. However, the two speed factors did not explain a significant portion of shared variance. This result suggests that RT and P3 latency in the Hick paradigm are measuring different aspects of information processing that explain different parts of variance in intelligence.
Resumo:
Detrimental effects of anxiety on cognitive performance have been explained by the activation of worry, detracting attention away from the task at hand. However, recent research has shown that anxiety is only related to performance when self-control capacity is low (i.e., ego depletion). The aim of the present work has been to extend these findings by showing that activation of worry will interfere with cognitive performance more strongly when self-control capacity is momentarily depleted compared to intact. After manipulations of self-control capacity and worry activation, 70 undergraduates completed a standardized intelligence test. As expected, activation of worry was associated with lower performance when self-control capacity was depleted, but had no effect when self-control capacity was intact. The findings implicate that worry may play a causal role in the anxiety–performance relationship, but only when its regulation by self-control is momentarily hindered.