51 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved. KEYWORDS: allogeneic bone; augmentation; autoclaving; autologous bone; bone bank; bone grafts; bone regeneration; bone supernatant; bone-conditioned medium; freezing; pasteurization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autologous bone grafts are widely used in oral and maxillofacial surgery, orthopedics, and traumatology. Autologous bone grafts not only replace missing bone, they also support the complex process of bone regeneration. This favorable behavior of autografts is attributed to the three characteristics: osteoconductivity, osteogenicity, and osteoinductivity. However, there is another aspect: Bone grafts release a myriad of molecules, including growth factors, which can target mesenchymal cells involved in bone regeneration. The paracrine properties of bone grafts can be studied in vitro by the use of bone-conditioned medium (BCM). Here we present a protocol on how to prepare bone-conditioned medium from native pig cortical bone, and bone that underwent thermal processing or demineralization. Cells can be directly exposed to BCM or seeded onto biomaterials, such as collagen membranes, previously soaked with BCM. We give examples for in vitro bioassays with mesenchymal cells on the expression of TGF-β regulated genes. The presented protocols should encourage to further reveal the paracrine effects of bone grafts during bone regeneration and open a path for translational research in the broad field of reconstructive surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Inhibition of prolyl hydroxylases stimulates bone regeneration. Consequently, bone substitute materials were developed that release prolyl hydroxylase inhibitors. However, the impact of prolyl hydroxylase inhibitors released from these carriers on osteoclastogenesis is not clear. We therefore assessed the effect of bone substitute materials that release prolyl hydroxylase inhibitors on osteoclastogenesis. MATERIAL AND METHODS Dimethyloxalylglycine, desferrioxamine, and l-mimosine were lyophilized onto bovine bone mineral and hydroxyapatite, and supernatants were generated. Osteoclastogenesis was induced in murine bone marrow cultures in the presence of the supernatants from bone substitute materials. The formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity were determined. To test for possible effects on osteoclast progenitor cells, we measured the effect of the supernatants on proliferation and viability. In addition, experiments were performed where prolyl hydroxylase inhibitors were directly added to the bone marrow cultures. RESULTS We found that prolyl hydroxylase inhibitors released within the first hours from bone substitute materials reduce the number and activity of TRAP-positive multinucleated cells. In line with this, addition of prolyl hydroxylase inhibitors directly to the bone marrow cultures dose-dependently reduced the number of TRAP-positive multinucleated cells and the overall resorption activity. Moreover, the released prolyl hydroxylase inhibitors decreased proliferation but not viability of osteoclast progenitor cells. CONCLUSION Our results show that prolyl hydroxylase inhibitors released from bone substitute materials decrease osteoclastogenesis in murine bone marrow cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.