57 resultados para SURFACTANT-ENCAPSULATED CLUSTERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds:  [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By reacting 4,4′-bipyridine (bpy) with selected trinuclear triangular CuII complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2(LL′)] [pz = pyrazolate anion; R = CH3, CH3CH2, CH2═CH, CH2═C(CH3); L, L′ = Hpz, H2O, MeOH] in MeOH, the substitution of monotopic ligands by ditopic bpy was observed. Depending on the stoichiometric reaction ratios, different compounds were isolated and structurally characterized. One- and two-dimensional coordination polymers (CPs), as well as two hexanuclear CuII clusters were identified. One of the hexanuclear clusters self-assembles into a supramolecular three-dimensional structure, and its crystal packing shows the presence of two intersecting channels, one of which is almost completely occupied by guest bpy, while in the second one guest water molecules are present. This compound also shows a reversible, thermally induced, single-crystal-to-single-crystal transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian clustering methods are typically used to identify barriers to gene flow, but they are prone to deduce artificial subdivisions in a study population characterized by an isolation-by-distance pattern (IbD). Here we analysed the landscape genetic structure of a population of wild boars (Sus scrofa) from south-western Germany. Two clustering methods inferred the presence of the same genetic discontinuity. However, the population in question was characterized by a strong IbD pattern. While landscape-resistance modelling failed to identify landscape features that influenced wild boar movement, partial Mantel tests and multiple regression of distance matrices (MRDMs) suggested that the empirically inferred clusters were separated by a genuine barrier. When simulating random lines bisecting the study area, 60% of the unique barriers represented, according to partial Mantel tests and MRDMs, significant obstacles to gene flow. By contrast, the random-lines simulation showed that the boundaries of the inferred empirical clusters corresponded to the most important genetic discontinuity in the study area. Given the degree of habitat fragmentation separating the two empirical partitions, it is likely that the clustering programs correctly identified a barrier to gene flow. The differing results between the work published here and other studies suggest that it will be very difficult to draw general conclusions about habitat permeability in wild boar from individual studies.