66 resultados para SOFT LITHOGRAPHY
Resumo:
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Resumo:
An optimal esthetic implant restoration is a combination of a visually pleasing prosthesis and surrounding peri-implant soft tissue architecture. This article introduces a clinical method, the dynamic compression technique, of conditioning soft tissues around bone-level implants with provisional restorations in the esthetic zone. The technique has several goals: to establish an adequate emergence profile; to recreate a balanced mucosa course and level in harmony with the gingiva of the adjacent teeth, including papilla height/width, localization of the mucosal zenith and the tissue profile's triangular shape; as well as to establish an accurate proximal contact area with the adjacent tooth/implant crown.
Resumo:
AIM To compare dentoskeletal and soft tissue treatment effects of two alternative Class II division 1 treatment modalities (maxillary first permanent molar extraction versus Herbst appliance). METHODS One-hundred-fifty-four Class II division 1 patients that had either been treated with extractions of the upper first molars and a lightwire multibracket (MB) appliance (n = 79; 38 girls, 41 boys) or non-extraction by means of a Herbst-MB appliance (n = 75; 35 girls, 40 boys). The groups were matched on age and sex. The average age at the start of treatment was 12.7 years for the extraction and for 13.0 years for the Herbst group. Pretreatment (T1) and posttreatment (T2) lateral cephalograms were retrospectively analyzed using a standard cephalometric analysis and the sagittal occlusal analysis according to Pancherz. RESULTS The SNA decrease was 1.10° (p = 0.001) more pronounced in the extraction group, the SNB angle increased 1.49° more in the Herbst group (p = 0.000). In the extraction group, a decrease in SNB angle (0.49°) was observed. The soft tissue profile convexity (N-Sn-Pog) decreased in both groups, which was 0.78° more (n. s.) pronounced in the Herbst group. The nasolabial angle increased significantly more (+ 2.33°, p = 0.025) in the extraction group. The mechanism of overjet correction in the extraction group was predominantly dental (65% dental and 35% skeletal changes), while in the Herbst group it was predominantly skeletal (58% skeletal and 42% dental changes) in origin. CONCLUSION Both treatment methods were successful and led to a correction of the Class II division 1 malocclusion. Whereas for upper first molar extraction treatment more dental and maxillary effects can be expected, in case of Herbst treatment skeletal and mandibular effects prevail.
Resumo:
PURPOSE To evaluate the biologic width dimensions around implants with nonmatching implant-abutment diameters. MATERIALS AND METHODS Five canines had their mandibular premolars and first molars removed bilaterally and replaced with 12 implants that had nonmatching implant-abutment diameters. On one side, six implants were placed in a submerged surgical approach, and the other side utilized a nonsubmerged approach. Two of the implants on each side were placed either 1 mm above, even with, or 1 mm below the alveolar crest. Two months later, gold crowns were attached, and the dogs were sacrificed 6 months postloading. Block sections were processed for histologic and histomorphometric analyses. RESULTS The bone level, connective tissue length, epithelial dimension, and biologic width were not significantly different when the implants were initially placed in a submerged or nonsubmerged surgical approach. The bone level was significantly different around implants placed 1 mm above the crest compared to implants placed even with or 1 mm below the alveolar crest. The connective tissue dimension was not different for any implant level placement. The epithelial dimension and biologic width were significantly greater for implants placed 1 mm below the alveolar crest compared to implants placed even with or 1 mm above the alveolar crest. For five of six implant placements, connective tissue covered the implant/abutment interface. CONCLUSIONS This study reveals a fundamental change in the biologic response to implants with nonmatching implant-abutment diameters. Unlike implants with matching implant-abutment diameters, the connective tissue extended coronally past the interface (microgap). This morphologic tissue alteration represents a significant change in the biologic reaction to implant-abutment interfaces and suggests that marginal inflammation is eliminated or greatly reduced in these implant designs.
Resumo:
We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum qT. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q⁎, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.
Resumo:
OBJECTIVES In 2003 the International Breast Cancer Study Group (IBCSG) initiated the TEXT and SOFT randomized phase III trials to answer two questions concerning adjuvant treatment for premenopausal women with endocrine-responsive early breast cancer: 1-What is the role of aromatase inhibitors (AI) for women treated with ovarian function suppression (OFS)? 2-What is the role of OFS for women who remain premenopausal and are treated with tamoxifen? METHODS TEXT randomized patients to receive exemestane or tamoxifen with OFS. SOFT randomized patients to receive exemestane with OFS, tamoxifen with OFS, or tamoxifen alone. Treatment was for 5 years from randomization. RESULTS TEXT and SOFT successfully met their enrollment goals in 2011. The 5738 enrolled women had lower-risk disease and lower observed disease-free survival (DFS) event rates than anticipated. Consequently, 7 and 13 additional years of follow-up for TEXT and SOFT, respectively, were required to reach the targeted DFS events (median follow-up about 10.5 and 15 years). To provide timely answers, protocol amendments in 2011 specified analyses based on chronological time and median follow-up. To assess the AI question, exemestane + OFS versus tamoxifen + OFS, a combined analysis of TEXT and SOFT became the primary analysis (n = 4717). The OFS question became the primary analysis from SOFT, assessing the unique comparison of tamoxifen + OFS versus tamoxifen alone (n = 2045). The first reports are anticipated in mid- and late-2014. CONCLUSIONS We present the original designs of TEXT and SOFT and adaptations to ensure timely answers to two questions concerning optimal adjuvant endocrine treatment for premenopausal women with endocrine-responsive breast cancer. Trial Registration TEXT: Clinicaltrials.govNCT00066703 SOFT: Clinicaltrials.govNCT00066690.
Resumo:
In cranio-maxillofacial surgery, the determination of a proper surgical plan is an important step to attain a desired aesthetic facial profile and a complete denture closure. In the present paper, we propose an efficient modeling approach to predict the surgical planning on the basis of the desired facial appearance and optimal occlusion. To evaluate the proposed planning approach, the predicted osteotomy plan of six clinical cases that underwent CMF surgery were compared to the real clinical plan. Thereafter, simulated soft-tissue outcomes were compared using the predicted and real clinical plan. This preliminary retrospective comparison of both osteotomy planning and facial outlook shows a good agreement and thereby demonstrates the potential application of the proposed approach in cranio-maxillofacial surgical planning prediction.
Resumo:
Strict next-to-leading order (NLO) results for the dilepton production rate from a QCD plasma at temperatures above a few hundred MeV suffer from a breakdown of the loop expansion in the regime of soft invariant masses M 2 ≪ (πT)2. In this regime an LPM resummation is needed for obtaining the correct leading-order result. We show how to construct an interpolation between the hard NLO and the leading-order LPM expression, which is theoretically consistent in both regimes and free from double counting. The final numerical results are presented in a tabulated form, suitable for insertion into hydrodynamical codes.