207 resultados para Reporting of victims of trauma
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
BACKGROUND: The traditional approach to stable blunt thoracic aortic injuries (TAI) is immediate repair, with delayed repair reserved for patients with major associated injuries. In recent years, there has been a trend toward delayed repair, even in low-risk patients. This study evaluates the current practices in the surgical community regarding the timing of aortic repair and its effects on outcomes. METHODS: This was a prospective, observational multicenter study sponsored by the American Association for the Surgery of Trauma. The study included patients with blunt TAI scheduled for aortic repair by open or endovascular procedure. Patients in extremis and those managed without aortic repair were excluded. The data collection included demographics, initial clinical presentation, Injury Severity Scores, type and site of aortic injury, type of aortic repair (open or endovascular repair), and time from injury to aortic repair. The study patients were divided into an early repair (< or = 24 hours) and delayed repair groups (> 24 hours). The outcome variables included survival, ventilator days, intensive care unit (ICU) and hospital lengths of stay, blood transfusions, and complications. The outcomes in the two groups were compared with multivariate analysis after adjusting for age, Glasgow Coma Scale, hypotension, major associated injuries, and type of aortic repair. A second multivariate analysis compared outcomes between early and delayed repair, in patients with and patients without major associated injuries. RESULTS: There were 178 patients with TAI eligible for inclusion and analysis, 109 (61.2%) of which underwent early repair and 69 (38.8%) delayed repair. The two groups had similar epidemiologic, injury severity, and type of repair characteristics. The adjusted mortality was significantly higher in the early repair group (adjusted OR [95% CI] 7.78 [1.69-35.70], adjusted p value = 0.008). The adjusted complication rate was similar in the two groups. However, delayed repair was associated with significantly longer ICU and hospital lengths of stay. Analysis of the 108 patients without major associated injuries, adjusting for age, Glasgow Coma Scale, hypotension, and type of aortic repair, showed that in early repair there was a trend toward higher mortality rate (adjusted OR 9.08 [0.88-93.78], adjusted p value = 0.064) but a significantly lower complication rate (adjusted OR 0.4 [0.18-0.96], adjusted p value 0.040) and shorter ICU stay (adjusted p value = 0.021) than the delayed repair group. A similar analysis of the 68 patients with major associated injuries, showed a strong trend toward higher mortality in the early repair group (adjusted OR 9.39 [0.93-95.18], adjusted p value = 0.058). The complication rate was similar in both groups (adjusted p value = 0.239). CONCLUSIONS: Delayed repair of stable blunt TAI is associated with improved survival, irrespective of the presence or not of major associated injuries. However, delayed repair is associated with a longer length of ICU stay and in the group of patients with no major associated injuries a significantly higher complication rate.
Resumo:
OBJECTIVES To identify factors associated with discrepant outcome reporting in randomized drug trials. STUDY DESIGN AND SETTING Cohort study of protocols submitted to a Swiss ethics committee 1988-1998: 227 protocols and amendments were compared with 333 matching articles published during 1990-2008. Discrepant reporting was defined as addition, omission, or reclassification of outcomes. RESULTS Overall, 870 of 2,966 unique outcomes were reported discrepantly (29.3%). Among protocol-defined primary outcomes, 6.9% were not reported (19 of 274), whereas 10.4% of reported outcomes (30 of 288) were not defined in the protocol. Corresponding percentages for secondary outcomes were 19.0% (284 of 1,495) and 14.1% (334 of 2,375). Discrepant reporting was more likely if P values were <0.05 compared with P ≥ 0.05 [adjusted odds ratio (aOR): 1.38; 95% confidence interval (CI): 1.07, 1.78], more likely for efficacy compared with harm outcomes (aOR: 2.99; 95% CI: 2.08, 4.30) and more likely for composite than for single outcomes (aOR: 1.48; 95% CI: 1.00, 2.20). Cardiology (aOR: 2.34; 95% CI: 1.44, 3.79) and infectious diseases (aOR: 1.77; 95% CI: 1.01, 3.13) had more discrepancies compared with all specialties combined. CONCLUSION Discrepant reporting was associated with statistical significance of results, type of outcome, and specialty area. Trial protocols should be made freely available, and the publications should describe and justify any changes made to protocol-defined outcomes.
Resumo:
Molecular data are now widely used in epidemiological studies to investigate the transmission, distribution, biology, and diversity of pathogens. Our objective was to establish recommendations to support good scientific reporting of molecular epidemiological studies to encourage authors to consider specific threats to valid inference. The statement Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID) builds upon the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative. The STROME-ID statement was developed by a working group of epidemiologists, statisticians, bioinformaticians, virologists, and microbiologists with expertise in control of infection and communicable diseases. The statement focuses on issues relating to the reporting of epidemiological studies of infectious diseases using molecular data that were not addressed by STROBE. STROME-ID addresses terminology, measures of genetic diversity within pathogen populations, laboratory methods, sample collection, use of molecular markers, molecular clocks, timeframe, multiple-strain infections, non-independence of infectious-disease data, missing data, ascertainment bias, consistency between molecular and epidemiological data, and ethical considerations with respect to infectious-disease research. In total, 20 items were added to the 22 item STROBE checklist. When used, the STROME-ID recommendations should advance the quality and transparency of scientific reporting, with clear benefits for evidence reviews and health-policy decision making.
Resumo:
Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalisability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies. The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers. This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated Web site (http://www.strobe-statement.org/) should be helpful resources to improve reporting of observational research.
Resumo:
PURPOSE Confidence intervals (CIs) are integral to the interpretation of the precision and clinical relevance of research findings. The aim of this study was to ascertain the frequency of reporting of CIs in leading prosthodontic and dental implantology journals and to explore possible factors associated with improved reporting. MATERIALS AND METHODS Thirty issues of nine journals in prosthodontics and implant dentistry were accessed, covering the years 2005 to 2012: The Journal of Prosthetic Dentistry, Journal of Oral Rehabilitation, The International Journal of Prosthodontics, The International Journal of Periodontics & Restorative Dentistry, Clinical Oral Implants Research, Clinical Implant Dentistry and Related Research, The International Journal of Oral & Maxillofacial Implants, Implant Dentistry, and Journal of Dentistry. Articles were screened and the reporting of CIs and P values recorded. Other information including study design, region of authorship, involvement of methodologists, and ethical approval was also obtained. Univariable and multivariable logistic regression was used to identify characteristics associated with reporting of CIs. RESULTS Interrater agreement for the data extraction performed was excellent (kappa = 0.88; 95% CI: 0.87 to 0.89). CI reporting was limited, with mean reporting across journals of 14%. CI reporting was associated with journal type, study design, and involvement of a methodologist or statistician. CONCLUSIONS Reporting of CI in implant dentistry and prosthodontic journals requires improvement. Improved reporting will aid appraisal of the clinical relevance of research findings by providing a range of values within which the effect size lies, thus giving the end user the opportunity to interpret the results in relation to clinical practice.
Resumo:
This study investigated the attitudes and beliefs of pig farmers and hunters in Germany, Bulgaria and the western part of the Russian Federation towards reporting suspected cases of African swine fever (ASF). Data were collected using a web-based questionnaire survey targeting pig farmers and hunters in these three study areas. Separate multivariable logistic regression models identified key variables associated with each of the three binary outcome variables whether or not farmers would immediately report suspected cases of ASF, whether or not hunters would submit samples from hunted wild boar for diagnostic testing and whether or not hunters would report wild boar carcasses. The results showed that farmers who would not immediately report suspected cases of ASF are more likely to believe that their reputation in the local community would be adversely affected if they were to report it, that they can control the outbreak themselves without the involvement of veterinary services and that laboratory confirmation would take too long. The modelling also indicated that hunters who did not usually submit samples of their harvested wild boar for ASF diagnosis, and hunters who did not report wild boar carcasses are more likely to justify their behaviour through a lack of awareness of the possibility of reporting. These findings emphasize the need to develop more effective communication strategies targeted at pig farmers and hunters about the disease, its epidemiology, consequences and control methods, to increase the likelihood of early reporting, especially in the Russian Federation where the virus circulates
Resumo:
OBJECTIVES Respondent-driven sampling (RDS) is a new data collection methodology used to estimate characteristics of hard-to-reach groups, such as the HIV prevalence in drug users. Many national public health systems and international organizations rely on RDS data. However, RDS reporting quality and available reporting guidelines are inadequate. We carried out a systematic review of RDS studies and present Strengthening the Reporting of Observational Studies in Epidemiology for RDS Studies (STROBE-RDS), a checklist of essential items to present in RDS publications, justified by an explanation and elaboration document. STUDY DESIGN AND SETTING We searched the MEDLINE (1970-2013), EMBASE (1974-2013), and Global Health (1910-2013) databases to assess the number and geographical distribution of published RDS studies. STROBE-RDS was developed based on STROBE guidelines, following Guidance for Developers of Health Research Reporting Guidelines. RESULTS RDS has been used in over 460 studies from 69 countries, including the USA (151 studies), China (70), and India (32). STROBE-RDS includes modifications to 12 of the 22 items on the STROBE checklist. The two key areas that required modification concerned the selection of participants and statistical analysis of the sample. CONCLUSION STROBE-RDS seeks to enhance the transparency and utility of research using RDS. If widely adopted, STROBE-RDS should improve global infectious diseases public health decision making.