66 resultados para Remodelling
Resumo:
INTRODUCTION: Ruptures of the anterior cruciate ligament are being diagnosed with increasing frequency in skeletally immature individuals. It was our aim to investigate the graft remodelling process following an autologous, transphyseal reconstruction of the anterior cruciate ligament (ACL) in skeletally immature sheep. We hypothesized that the ligamentisation process in immature sheep is quicker and more complete when compared to adult sheep. MATERIALS AND METHODS: Skeletally immature sheep with an age of 4 months underwent a fully transphyseal ACL reconstruction using an autologous tendon. The animals were subsequently sacrificed at 3, 6, 12 and 24 weeks following surgery. Each group was characterised histomorphometrically, by immunostaining (VEGF, SMA), by transmission electron microscopy (TEM) and biomechanically (UFS Roboter). RESULTS: The histomorphometric analysis and presence of VEGF and SMA positive cells demonstrated a rapid return to a ligament like structure. The biomechanical analysis revealed an anteroposterior translation that was still increased even 6 months following surgery. CONCLUSION: As in adult sheep models, the remodeling of a soft tissue graft used for ACL reconstruction results in a biomechanically inferior substitute. However, the immature tissue seems to remodel faster and more complete when compared to adults.
Resumo:
An utrastructural morphometric study of the postnatally remodelling lungs of the quokka wallaby (Setonix brachyurus) was undertaken. Allometric scaling of the volumes of the parenchymal components against body mass was performed. Most parameters showed a positive correlation with body mass in all the developmental stages, except the volume of type II pneumocytes during the alveolar stage. The interstitial tissue and type II cell volumes increased slightly faster than body mass in the saccular stage, their growth rates declining in the alveolar stage. Conversely, type I pneumocyte volumes increased markedly in both the saccular and alveolar stages. Both capillary and endothelial volumes as well as the capillary and airspace surface areas showed highest rates of increase during the alveolar stage, at which time the rate was notably higher than that of the body mass. The pulmonary diffusion capacity increased gradually, the rate being highest in the alveolar stage and the adult values attained were comparable to those of eutherians.
Resumo:
Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.
Resumo:
Over the past five decades, management of acute ST-segment elevation myocardial infarction (STEMI) has evolved substantially. Current treatment encompasses a systematic chain of network activation, antithrombotic drugs, and rapid instigation of mechanical reperfusion, although pharmacoinvasive strategies remain relevant. Secondary prevention with drugs and lifestyle modifications completes the contemporary management package. Despite a tangible improvement in outcomes, STEMI remains a frequent cause of morbidity and mortality, justifying the quest to find new therapeutic avenues. Ways to reduce delays in doing coronary angioplasty after STEMI onset include early recognition of symptoms by patients and prehospital diagnosis by paramedics so that the emergency room can be bypassed in favour of direct admission to the catheterisation laboratory. Mechanical reperfusion can be optimised by improvements to stent design, whereas visualisation of infarct size has been improved by developments in cardiac MRI. Novel treatments to modulate the inflammatory component of atherosclerosis and the vulnerable plaque include use of bioresorbable vascular scaffolds and anti-proliferative drugs. Translational efforts to improve patients' outcomes after STEMI in relation to cardioprotection, cardiac remodelling, and regeneration are also being realised. This is the third in a Series of three papers about ST-segment elevation myocardial infarction.
Resumo:
AIMS To assess serially the edge vascular response (EVR) of a bioresorbable vascular scaffold (BVS) compared to a metallic everolimus-eluting stent (EES). METHODS AND RESULTS Non-serial evaluations of the Absorb BVS at one year have previously demonstrated proximal edge constrictive remodelling and distal edge changes in plaque composition with increase of the percent fibro-fatty (FF) tissue component. The 5 mm proximal and distal segments adjacent to the implanted devices were investigated serially with intravascular ultrasound (IVUS), post procedure, at six months and at two years, from the ABSORB Cohort B1 (n=45) and the SPIRIT II (n=113) trials. Twenty-two proximal and twenty-four distal edge segments were available for analysis in the ABSORB Cohort B1 trial. In the SPIRIT II trial, thirty-three proximal and forty-six distal edge segments were analysed. At the 5-mm proximal edge, the vessels treated with an Absorb BVS from post procedure to two years demonstrated a lumen loss (LL) of 6.68% (-17.33; 2.08) (p=0.027) with a trend toward plaque area increase of 7.55% (-4.68; 27.11) (p=0.06). At the 5-mm distal edge no major changes were evident at either time point. At the 5-mm proximal edge the vessels treated with a XIENCE V EES from post procedure to two years did not show any signs of LL, only plaque area decrease of 6.90% (-17.86; 4.23) (p=0.035). At the distal edge no major changes were evident with regard to either lumen area or vessel remodelling at the same time point. CONCLUSIONS The IVUS-based serial evaluation of the EVR up to two years following implantation of a bioresorbable everolimus-eluting scaffold shows a statistically significant proximal edge LL; however, this finding did not seem to have any clinical implications in the serial assessment. The upcoming imaging follow-up of the Absorb BVS at three years is anticipated to provide further information regarding the vessel wall behaviour at the edges.
Resumo:
BACKGROUND The long-term results after second generation everolimus eluting bioresorbable vascular scaffold (Absorb BVS) placement in small vessels are unknown. Therefore, we investigated the impact of vessel size on long-term outcomes, after Absorb BVS implantation. METHODS In ABSORB Cohort B Trial, out of the total study population (101 patients), 45 patients were assigned to undergo 6-month and 2-year angiographic follow-up (Cohort B1) and 56 patients to have angiographic follow-up at 1-year (Cohort B2). The pre-reference vessel diameter (RVD) was <2.5 mm (small-vessel group) in 41 patients (41 lesions) and ≥2.5 mm (large-vessel group) in 60 patients (61 lesions). Outcomes were compared according to pre-RVD. RESULTS At 2-year angiographic follow-up no differences in late lumen loss (0.29±0.16 mm vs 0.25±0.22 mm, p=0.4391), and in-segment binary restenosis (5.3% vs 5.3% p=1.0000) were demonstrated between groups. In the small-vessel group, intravascular ultrasound analysis showed a significant increase in vessel area (12.25±3.47 mm(2) vs 13.09±3.38 mm(2) p=0.0015), scaffold area (5.76±0.96 mm(2) vs 6.41±1.30 mm(2) p=0.0008) and lumen area (5.71±0.98 mm(2) vs 6.20±1.27 mm(2) p=0.0155) between 6-months and 2-year follow-up. No differences in plaque composition were reported between groups at either time point. At 2-year clinical follow-up, no differences in ischaemia-driven major adverse cardiac events (7.3% vs 10.2%, p=0.7335), myocardial infarction (4.9% vs 1.7%, p=0.5662) or ischaemia-driven target lesion revascularisation (2.4% vs 8.5%, p=0.3962) were reported between small and large vessels. No deaths or scaffold thrombosis were observed. CONCLUSIONS Similar clinical and angiographic outcomes at 2-year follow-up were reported in small and large vessel groups. A significant late lumen enlargement and positive vessel remodelling were observed in small vessels.
Resumo:
Secondary hypertension refers to arterial hypertension due to an identifiable cause and affects ∼5-10% of the general hypertensive population. Because secondary forms are rare and work up is time-consuming and expensive, only patients with clinical suspicion should be screened. In recent years, some new aspects gained importance regarding this screening. In particular, increasing evidence suggests that 24 h ambulatory blood pressure (BP) monitoring plays a central role in the work up of patients with suspected secondary hypertension. Moreover, obstructive sleep apnoea has been identified as one of the most frequent causes. Finally, the introduction of catheter-based renal denervation for the treatment of patients with resistant hypertension has dramatically increased the interest and the number of patients evaluated for renal artery stenosis. We review the clinical clues of the most common causes of secondary hypertension. Specific recommendations are given as to evaluation and treatment of various forms of secondary hypertension. Despite appropriate therapy or even removal of the secondary cause, BP rarely ever returns to normal with long-term follow-up. Such residue hypertension indicates either that some patients with secondary hypertension also have concomitant essential hypertension or that irreversible vascular remodelling has taken place. Thus, in patients with potentially reversible causes of hypertension, early detection and treatment are important to minimize/prevent irreversible changes in the vasculature and target organs.
Resumo:
Augmented inositol 1,4,5-trisphosphate receptor (InsP3R) function has been linked to a variety of cardiac pathologies, including cardiac arrhythmia. The contribution of inositol 1,4,5-trisphosphate-induced Ca2+ release (IP3ICR) in excitation-contraction coupling (ECC) under physiological conditions, as well as under cellular remodelling, remains controversial. Here we test the hypothesis that local IP3ICR directly affects ryanodine receptor (RyR) function and subsequent Ca2+-induced Ca2+ release in atrial myocytes. IP3ICR was evoked by UV-flash photolysis of caged InsP3 under whole-cell configuration of the voltage-clamp technique in atrial myocytes isolated from C57/BL6 mice. Photolytic release of InsP3 was accompanied by a significant increase in the Ca2+ release event frequency (4.14±0.72 vs. 6.20±0.76 events (100 μm)−1 s−1). These individual photolytically triggered Ca2+ release events were identified as Ca2+ sparks, which originated from RyR openings. This was verified by Ca2+ spark analysis and pharmacological separation between RyR and InsP3R-dependent sarcoplasmic reticulum (SR)-Ca2+ release (2-aminoethoxydiphenyl borate, xestospongin C, tetracaine). Significant SR-Ca2+ flux but eventless SR-Ca2+ release through InsP3R were characterized using SR-Ca2+ leak/SR-Ca2+ load measurements. These results strongly support the idea that IP3ICR can effectively modulate RyR openings and Ca2+ spark probability. We conclude that eventless and highly efficient InsP3-dependent SR-Ca2+ flux is the main mechanism of functional cross-talk between InsP3Rs and RyRs, which may be an important factor in the modulation of ECC sensitivity.
Resumo:
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Resumo:
Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.
Resumo:
AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.
Resumo:
OBJECTIVES Valve-sparing root replacement (VSRR) is thought to reduce the rate of thromboembolic and bleeding events compared with aortic root replacement using a mechanical aortic root replacement (MRR) with a composite graft by avoiding oral anticoagulation. But as VSRR carries a certain risk for subsequent reinterventions, decision-making in the individual patient can be challenging. METHODS Of 100 Marfan syndrome (MFS) patients who underwent 169 aortic surgeries and were followed at our institution since 1995, 59 consecutive patients without a history of dissection or prior aortic surgery underwent elective VSRR or MRR and were retrospectively analysed. RESULTS VSRR was performed in 29 (David n = 24, Yacoub n = 5) and MRR in 30 patients. The mean age was 33 ± 15 years. The mean follow-up after VSRR was 6.5 ± 4 years (180 patient-years) compared with 8.8 ± 9 years (274 patient-years) after MRR. Reoperation rates after root remodelling (Yacoub) were significantly higher than after the reimplantation (David) procedure (60 vs 4.2%, P = 0.01). The need for reinterventions after the reimplantation procedure (0.8% per patient-year) was not significantly higher than after MRR (P = 0.44) but follow-up after VSRR was significantly shorter (P = 0.03). There was neither significant morbidity nor mortality associated with root reoperations. There were no neurological events after VSRR compared with four stroke/intracranial bleeding events in the MRR group (log-rank, P = 0.11), translating into an event rate of 1.46% per patient-year following MRR. CONCLUSION The calculated annual failure rate after VSRR using the reimplantation technique was lower than the annual risk for thromboembolic or bleeding events. Since the perioperative risk of reinterventions following VSRR is low, patients might benefit from VSRR even if redo surgery may become necessary during follow-up.
Resumo:
The Barostim neo ™ system is a novel implantable device that activates the carotid baroreflex. It decreases the sympathetic activity and inhibits the renin system, which results in reduced blood pressure and heart rate. In patients with resistant hypertension, electrically activation of the baroreflex leads to an average decrease in systolic blood pressure of 38, 36, 40 and 53 mmHg at 1, 2, 3 and 4 years, respectively. Additionally, cardiac remodelling with reduced left ventricular mass and posterior wall thickness has been observed in long-term studies. In a limited number of patients with heart failure, baroreflex activation therapy leads to a decrease in muscle sympathetic nerve activity and to improved quality of life and functional capacities. The implantation procedure is safe and associated with risks comparable with those of other active implantable devices. Barostim neo is currently available in several European countries.
Resumo:
BACKGROUND Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. METHODS Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. RESULTS Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. CONCLUSION The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.
Resumo:
Abstract PRINCIPLES: Computed tomography (CT) is inferior to the fibroscan and laboratory testing in the noninvasive diagnosis of liver fibrosis. On the other hand, CT is a frequently used diagnostic tool in modern medicine. The auxiliary finding of clinically occult liver fibrosis in CT scans could result in an earlier diagnosis. The aim of this study was to analyse quantifiable direct signs of liver remodelling in CT scans to depict liver fibrosis in a precirrhotic stage. METHODS: Retrospective review of 148 abdominal CT scans (80 liver cirrhosis, 35 precirrhotic fibrosis and 33 control patients). Fibrosis and cirrhosis were histologically proven. The diameters of the three main hepatic veins were measured 1-2 cm before their aperture into the inferior caval vein. The width of the caudate and the right hepatic lobe were divided, and measured horizontally at the level of the first bifurcation of the right portal vein in axial planes (caudate-right-lobe ratio). A combination of both (sum of liver vein diameters divided by the caudate-right lobe ratio) was defined as the ld/crl ratio. These metrics were analysed for the detection of liver fibrosis and cirrhosis. RESULTS: An ld/crl-r <24 showed a sensitivity of 83% and a specificity of 76% for precirrhotic liver fibrosis. Liver cirrhosis could be detected with a sensitivity of 88% and a specificity of 82% if ld/crl-r <20. CONCLUSION: An ld/crl-r <24 justifies laboratory testing and a fibroscan. This could bring forward the diagnosis and patients would profit from early treatment in a potentially reversible stage of disease.