132 resultados para Regulatory signs.
Resumo:
BACKGROUND: Staphylococcus aureus, a leading cause of chronic or acute infections, is traditionally considered an extracellular pathogen despite repeated reports of S. aureus internalization by a variety of non-myeloid cells in vitro. This property potentially contributes to bacterial persistence, protection from antibiotics and evasion of immune defenses. Mechanisms contributing to internalization have been partly elucidated, but bacterial processes triggered intracellularly are largely unknown. RESULTS: We have developed an in vitro model using human lung epithelial cells that shows intracellular bacterial persistence for up to 2 weeks. Using an original approach we successfully collected and amplified low amounts of bacterial RNA recovered from infected eukaryotic cells. Transcriptomic analysis using an oligoarray covering the whole S. aureus genome was performed at two post-internalization times and compared to gene expression of non-internalized bacteria. No signs of cellular death were observed after prolonged internalization of Staphylococcus aureus 6850 in epithelial cells. Following internalization, extensive alterations of bacterial gene expression were observed. Whereas major metabolic pathways including cell division, nutrient transport and regulatory processes were drastically down-regulated, numerous genes involved in iron scavenging and virulence were up-regulated. This initial adaptation was followed by a transcriptional increase in several metabolic functions. However, expression of several toxin genes known to affect host cell integrity appeared strictly limited. CONCLUSION: These molecular insights correlated with phenotypic observations and demonstrated that S. aureus modulates gene expression at early times post infection to promote survival. Staphylococcus aureus appears adapted to intracellular survival in non-phagocytic cells.
Resumo:
In previous research it was found that patients with diabetes mellitus suffer from multiple physical symptoms even early in their disease course. Such complaints may relate to blood glucose levels or can be understood as a sign of distress in respect to the diagnosis of a chronic disease. PURPOSE: This study was performed to evaluate in a cross-sectional analysis all the symptoms that patients may complain of and to relate these symptoms to a possible dysfunction of the autonomic nervous system. METHOD: We assessed the complaints of 66 patients with diabetes mellitus and compared these variables with those of patients with psychological disturbances (n = 794) or somatic disease (n = 162). The symptoms were recorded by means of several questionnaires such as the "Giessener Beschwerdebogen" (GBB), "the Freiburger Persönlichkeitsinventar" (FPI), the German version of the State Trait Anxiety Inventory (STAI) and the German version of the State Trait Anger Expression Inventory (STAXI). The autonomic nervous system was assessed using resting and mental stress conditions in a subset of patients with diabetes mellitus (n = 29) and psychological disturbances (n = 44). RESULTS: Patients suffering from diabetes mellitus and psychological disturbances showed a tendency to higher scores in GBB, STAI and STAXI. As far as psychological disturbances are concerned, the complaints experienced by patients with diabetes mellitus were found to be similar to those with somatic diseases. Both groups, however, rate clearly below those with psychological disturbances. The results of autonomic testing showed a significant disturbance in patients with diabetes mellitus with reduced sensitivity of the baroreceptor indicating autonomic neuropathy. CONCLUSION: Some of the physical complaints of patients with diabetes mellitus can be understood in connection with autonomic dysfunction. Moreover, an explicitly psychological view of these complaints may not be correct.
Resumo:
To clarify the pharmacological profile of the two new calcium channel blockers tiapamil and nisoldipine in humans, their acute effects as compared with those of the reference agent nifedipine were assessed in 10 normal subjects and 10 patients with essential hypertension. Blood pressure (BP), heart rate (HR), plasma and urinary catecholamine, sodium and potassium, plasma renin and aldosterone levels, and urinary prostaglandin E2 and F2 excretion rates were determined before and up to 4 or 5 h (urine values) after intravenous injection of placebo (20 ml 0.9% NaCl), tiapamil 1 mg/kg body weight, nisoldipine 6 micrograms/kg, or nifedipine 15 micrograms/kg. The four studies were performed at weekly intervals according to Latin square design. All three calcium channel blockers significantly (p less than 0.05 or lower) lowered BP and distinctly increased sodium excretion in hypertensive patients, but had only little influence on these parameters in normal subjects. HR was increased in both groups. Changes in BP and HR were maximal at 5 min and largely dissipated 3 h after drug injection. Effects on BP and HR, as well as concomitant mild increases in plasma norepinephrine and renin levels that occurred in both groups, tended to be more pronounced (about double) following nisoldipine than following tiapamil or nifedipine at the dosages given. Plasma aldosterone, epinephrine levels, and prostaglandin excretion rates were not consistently modified. These findings demonstrate that tiapamil and nisoldipine possess distinct antihypertensive properties in humans. Different chronotropic and renin-activating effects of different calcium channel blockers may be determined, at least in part, by a different influence on sympathetic activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Despite the improvements in cancer therapy during the past years, high-grade gliomas and many other types of cancer are still extremely resistant to current forms of therapy. Boron neutron capture therapy (BNCT) provides a promising way to destroy cancer cells without damaging healthy tissue. However, BNCT in practice is still limited due to the lack of boron-containing compounds that selectively deliver boron to cancer cells. Since many neuroendocrine tumors show an overexpression of the somatostatin receptor, it was our aim to synthesize compounds that contain a large number of boron atoms and still show high affinity toward this transmembrane receptor. The synthetic peptide Tyr (3)-octreotate (TATE) was chosen as a high-affinity and internalizing tumor targeting vector (TTV). Novel boron cluster compounds, containing 10 or 20 boron atoms, were coupled to the N-terminus of TATE. The obtained affinity data demonstrate that the use of a spacer between TATE and the closo-borane moiety is the option to avoid a loss of biological affinity of closo-borane conjugated TATE. For the first time, it was shown that closo-borane conjugated regulatory peptides retain high biological affinity and selectivity toward their transmembrane tumor receptors. The results obtained and the improvement of spacer and boron building block chemistry may stimulate new directions for BNCT.
Resumo:
ATP-binding cassette (ABC) transporters play a pivotal role in human physiology, and mutations in these genes often result in severe hereditary diseases. ABC transporters are expressed in the bovine mammary gland but their physiological role in this organ remains elusive. Based on findings in the context of human disorders we speculated that candidate ABC transporters are implicated in lipid and cholesterol transport in the mammary gland. Therefore we investigated the expression pattern of selected genes that are associated with sterol transport in lactating and nonlactating mammary glands of dairy cows. mRNA levels from mammary gland biopsies taken during lactation and in the first and second week of the dry period were analysed using quantitative PCR. Five ABC transporter genes, namely ABCA1, ABCA7, ABCG1, ABCG2 and ABCG5, their regulating genes LXRalpha, PPARgamma, SREBP1 and the milk proteins lactoferrin and alpha-lactalbumin were assessed. A significantly enhanced expression in the dry period was observed for ABCA1 while a significant decrease of expression in this period was detected for ABCA7, ABCG2, SREBP1 and alpha-lactalbumin. ABCG1, ABCG5, LXRalpha, PPARgamma and lactoferrin expression was not altered between lactation and dry period. These results indicate that candidate ABC transporters involved in lipid and cholesterol transport show differential mRNA expression between lactation and the dry period. This may be due to physiological changes in the mammary gland such as immigration of macrophages or the accumulation of fat due to the loss of liquid in the involuting mammary gland. The current mRNA expression analysis of transporters in the mammary gland is the prerequisite for elucidating novel molecular mechanisms underlying cholesterol and lipid transfer into milk.
Resumo:
The proinflammatory cytokine IL-6 seems to have an important role in the intestinal inflammation that characterizes inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis. However, little is known about the molecular mechanisms regulating IL-6 production in IBD. Here, we assessed the role of the transcriptional regulator IFN regulatory factor-4 (IRF4) in this process. Patients with either Crohn disease or ulcerative colitis exhibited increased IRF4 expression in lamina propria CD3+ T cells as compared with control patients. Consistent with IRF4 having a regulatory function in T cells, in a mouse model of IBD whereby colitis is induced in RAG-deficient mice by transplantation with CD4+CD45RB(hi) T cells, adoptive transfer of wild-type but not IRF4-deficient T cells resulted in severe colitis. Furthermore, IRF4-deficient mice were protected from T cell-dependent chronic intestinal inflammation in trinitrobenzene sulfonic acid- and oxazolone-induced colitis. In addition, IRF4-deficient mice with induced colitis had reduced mucosal IL-6 production, and IRF4 was required for IL-6 production by mucosal CD90+ T cells, which it protected from apoptosis. Finally, the protective effect of IRF4 deficiency could be abrogated by systemic administration of either recombinant IL-6 or a combination of soluble IL-6 receptor (sIL-6R) plus IL-6 (hyper-IL-6). Taken together, our data identify IRF4 as a key regulator of mucosal IL-6 production in T cell-dependent experimental colitis and suggest that IRF4 might provide a therapeutic target for IBDs.
Resumo:
OBJECTIVE: In a prospective study we investigated whether numerical and functional changes of CD4+CD25(high) regulatory T cells (Treg) were associated with changes of disease activity observed during pregnancy and post partum in patients with rheumatoid arthritis (RA). METHODS: The frequency of CD4+CD25(high) T cells was determined by flow cytometry in 12 patients with RA and 14 healthy women during and after pregnancy. Fluorescence-activated cell sorting (FACS) was used to sort CD4+CD25(high) T cells and CD4+CD25- T cells were stimulated with anti-CD3 and anti-CD28 monoclonal antibodies alone or in co-culture to investigate proliferation and cytokine secretion. RESULTS: Frequencies of CD4+CD25(high) Treg were significantly higher in the third trimester compared to 8 weeks post partum in patients and controls. Numbers of CD4+CD25(high) Treg inversely correlated with disease activity in the third trimester and post partum. In co-culture experiments significantly higher amounts of IL10 and lowered levels of tumour necrosis factor (TNF)alpha and interferon (IFN)gamma were found in supernatants of the third trimester compared to postpartum samples. These findings were independent from health or disease in pregnancy, however postpartum TNFalpha and IFN gamma levels were higher in patients with disease flares. CONCLUSION: The amelioration of disease activity in the third trimester corresponded to the increased number of Treg that induced a pronounced anti-inflammatory cytokine milieu. The pregnancy related quantitative and qualitative changes of Treg suggest a beneficial effect of Treg on disease activity.
Resumo:
Smoking is known to be linked to skin ageing and there is evidence for premature senescence of parenchymal lung fibroblasts in emphysema. To reveal whether the emphysema-related changes in cellular phenotype extend beyond the lung, we compared the proliferation characteristics of lung and skin fibroblasts between patients with and without emphysema. Parenchymal lung fibroblasts and skin fibroblasts from the upper torso (thus limiting sun exposure bias) were obtained from patients without, or with mild, or with moderate to severe emphysema undergoing lung surgery. We analysed proliferation rate, population doublings (PD), staining for senescence-associated beta-galactosidase (beta-gal) and gene expression of IGFBP-3 and IGFBP-rP1. Population doubling time of lung fibroblasts differed between control, mild, and moderate to severe emphysema (median (IQR) 29.7(10.0), 33.4(6.1), 44.4(21.2) h; p=0.012) and staining for beta-gal was elevated in moderate to severe emphysema. Compared to control subjects, skin fibroblasts from patients with emphysema did not differ with respect to proliferation rate, PD and beta-gal staining, and showed a lower abundance of mRNA for IGFBP-3 and -rP1 (p<0.05, each). These results suggest that the induction of a senescent fibroblast phenotype by cigarette smoke, as observed in emphysema, primarily occurs in the lung.
Resumo:
The statins, a group of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are reported to influence a variety of immune system activities through 3-hydroxy-3-methylglutaryl coenzyme A reductase-dependent and -independent mechanisms. How statin treatment regulates immune system function in vivo nonetheless remains to be fully defined. We analyzed the immunomodulatory effects of lovastatin in a Candida albicans-induced delayed-type hypersensitivity reaction in mice. In this model, lovastatin administration reduced the acute inflammatory response elicited by C. albicans challenge. This anti-inflammatory activity of lovastatin was associated with a shift from a Th1 to a Th2 immune response, as well as an increase in the percentage of regulatory T cells at the inflammation site and in the regional draining lymph node. The lovastatin-induced increase in regulatory T cells in the inflamed skin was dependent on expression of CCL1, a chemokine that is locally up-regulated by statin administration. The anti-inflammatory effect of lovastatin was abrogated in CCL1-deficient mice. These results suggest that local regulation of chemokine expression may be an important process in statin-induced modulation of the immune system.
Resumo:
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by binding to target mRNAs, which leads to reduced protein synthesis and sometimes decreased steady-state mRNA levels. Although hundreds of miRNAs have been identified, much less is known about their biological function. Several studies have provided evidence that miRNAs affect pathways that are fundamental for metabolic control in higher organisms such as adipocyte and skeletal muscle differentiation. Furthermore, some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. These studies open the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs.