88 resultados para Rademacher complexity bound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑ hydroxyl + carboxyl-OPAHs, Σnitro-PAHs and Σalkyl + parent-PAHs ranged between 5–22, 0.2–13, 0.3–7, and 7–387 ng m− 3, respectively, being markedly higher than in most western cities. This represented a range of 0.01–0.4% and 0.002–0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD). The evolutionary conservation of the core NMD factors UPF1, UPF2 and UPF3 would imply a similar basic mechanism of PTC recognition in all eukaryotes. However, unlike NMD in yeast, which targets PTC-containing mRNAs irrespectively of whether their 5' cap is bound by the cap-binding complex (CBC) or by the eukaryotic initiation factor 4E (eIF4E), mammalian NMD has been claimed to be restricted to CBC-bound mRNAs during the pioneer round of translation. In our recent study we compared decay kinetics of two NMD reporter systems in mRNA fractions bound to either CBC or eIF4E in human cells. Our findings reveal that NMD destabilizes eIF4E bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event. Additionally, our results indicate that the closed loop structure of mRNA forms only after the replacement of CBC with eIF4E at the 5' cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schredl (2004) found that performing squats required about 40% more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted. In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20, and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for these condition where eight lucid dreamers had to walk 10, 20, or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps. Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics). However, no difference was found for relative times (no disproportional time effects) and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectrum of electrons from muons decaying in an atomic bound state is significantly modified by their interaction with the nucleus. Somewhat unexpectedly, its first measurement, at the Canadian laboratory TRIUMF, differed from basic theory. We show, using a combination of techniques developed in atomic, nuclear, and high-energy physics, that radiative corrections eliminate the discrepancy. In addition to solving that outstanding problem, our more precise predictions are potentially useful for interpreting future high-statistics muon experiments that aim to search for exotic interactions at 10−16 sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules (1). Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii (2). The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production (1). (1) Gebetsberger J. and Polacek N. (2013), RNA Biol. 10:1798-1808 (2) Gebetsberger J. et. al. (2012), Archaea, Article ID 260909

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.