49 resultados para Population Monte Carlo
Resumo:
Excess adiposity is associated with increased risks of developing adult malignancies. To inform public health policy and guide further research, the incident cancer burden attributable to excess body mass index (BMI >or= 25 kg/m(2)) across 30 European countries were estimated. Population attributable risks (PARs) were calculated using European- and gender-specific risk estimates from a published meta-analysis and gender-specific mean BMI estimates from a World Health Organization Global Infobase. Country-specific numbers of new cancers were derived from Globocan2002. A ten-year lag-period between risk exposure and cancer incidence was assumed and 95% confidence intervals (CI) were estimated in Monte Carlo simulations. In 2002, there were 2,171,351 new all cancer diagnoses in the 30 countries of Europe. Estimated PARs were 2.5% (95% CI 1.5-3.6%) in men and 4.1% (2.3-5.9%) in women. These collectively corresponded to 70,288 (95% CI 40,069-100,668) new cases. Sensitivity analyses revealed estimates were most influenced by the assumed shape of the BMI distribution in the population and cancer-specific risk estimates. In a scenario analysis of a plausible contemporary (2008) population, the estimated PARs increased to 3.2% (2.1-4.3%) and 8.6% (5.6-11.5%), respectively, in men and women. Endometrial, post-menopausal breast and colorectal cancers accounted for 65% of these cancers. This analysis quantifies the burden of incident cancers attributable to excess BMI in Europe. The estimates reported here provide a baseline for future modelling, and underline the need for research into interventions to control weight in the context of endometrial, breast and colorectal cancer.
Resumo:
Genetic characterization helps to assure breed integrity and to assign individuals to defined populations. The objective of this study was to characterize genetic diversity in six horse breeds and to analyse the population structure of the Franches-Montagnes breed, especially with regard to the degree of introgression with Warmblood. A total of 402 alleles from 50 microsatellite loci were used. The average number of alleles per locus was significantly lower in Thoroughbreds and Arabians. Average heterozygosities between breeds ranged from 0.61 to 0.72. The overall average of the coefficient of gene differentiation because of breed differences was 0.100, with a range of 0.036-0.263. No significant correlation was found between this parameter and the number of alleles per locus. An increase in the number of homozygous loci with increasing inbreeding could not be shown for the Franches-Montagnes horses. The proportion of shared alleles, combined with the neighbour-joining method, defined clusters for Icelandic Horse, Comtois, Arabians and Franches-Montagnes. A more disparate clustering could be seen for European Warmbloods and Thoroughbreds, presumably from frequent grading-up of Warmbloods with Thoroughbreds. Grading-up effects were also observed when Bayesian and Monte Carlo resampling approaches were used for individual assignment to a given population. Individual breed assignments to defined reference populations will be very difficult when introgression has occurred. The Bayesian approach within the Franches-Montagnes breed differentiated individuals with varied proportions of Warmblood.
Resumo:
The present study was conducted to estimate the direct losses due to Neospora caninum in Swiss dairy cattle and to assess the costs and benefits of different potential control strategies. A Monte Carlo simulation spreadsheet module was developed to estimate the direct costs caused by N. caninum, with and without control strategies, and to estimate the costs of these control strategies in a financial analysis. The control strategies considered were "testing and culling of seropositive female cattle", "discontinued breeding with offspring from seropositive cows", "chemotherapeutical treatment of female offspring" and "vaccination of all female cattle". Each parameter in the module that was considered to be uncertain, was described using probability distributions. The simulations were run with 20,000 iterations over a time period of 25 years. The median annual losses due to N. caninum in the Swiss dairy cow population were estimated to be euro 9.7 million euros. All control strategies that required yearly serological testing of all cattle in the population produced high costs and thus were not financially profitable. Among the other control strategies, two showed benefit-cost ratios (BCR) >1 and positive net present values (NPV): "Discontinued breeding with offspring from seropositive cows" (BCR=1.29, NPV=25 million euros ) and "chemotherapeutical treatment of all female offspring" (BCR=2.95, NPV=59 million euros). In economic terms, the best control strategy currently available would therefore be "discontinued breeding with offspring from seropositive cows".
Resumo:
The aim of our study was to develop a modeling framework suitable to quantify the incidence, absolute number and economic impact of osteoporosis-attributable hip, vertebral and distal forearm fractures, with a particular focus on change over time, and with application to the situation in Switzerland from 2000 to 2020. A Markov process model was developed and analyzed by Monte Carlo simulation. A demographic scenario provided by the Swiss Federal Statistical Office and various Swiss and international data sources were used as model inputs. Demographic and epidemiologic input parameters were reproduced correctly, confirming the internal validity of the model. The proportion of the Swiss population aged 50 years or over will rise from 33.3% in 2000 to 41.3% in 2020. At the total population level, osteoporosis-attributable incidence will rise from 1.16 to 1.54 per 1,000 person-years in the case of hip fracture, from 3.28 to 4.18 per 1,000 person-years in the case of radiographic vertebral fracture, and from 0.59 to 0.70 per 1,000 person-years in the case of distal forearm fracture. Osteoporosis-attributable hip fracture numbers will rise from 8,375 to 11,353, vertebral fracture numbers will rise from 23,584 to 30,883, and distal forearm fracture numbers will rise from 4,209 to 5,186. Population-level osteoporosis-related direct medical inpatient costs per year will rise from 713.4 million Swiss francs (CHF) to CHF946.2 million. These figures correspond to 1.6% and 2.2% of Swiss health care expenditures in 2000. The modeling framework described can be applied to a wide variety of settings. It can be used to assess the impact of new prevention, diagnostic and treatment strategies. In Switzerland incidences of osteoporotic hip, vertebral and distal forearm fracture will rise by 33%, 27%, and 19%, respectively, between 2000 and 2020, if current prevention and treatment patterns are maintained. Corresponding absolute fracture numbers will rise by 36%, 31%, and 23%. Related direct medical inpatient costs are predicted to increase by 33%; however, this estimate is subject to uncertainty due to limited availability of input data.