53 resultados para Planar loop resonators
Resumo:
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
Resumo:
This article gives details of our proposal to replace ordinary chiral SU(3)L×SU(3)R perturbation theory χPT3 by three-flavor chiral-scale perturbation theory χPTσ. In χPTσ, amplitudes are expanded at low energies and small u,d,s quark masses about an infrared fixed point αIR of three-flavor QCD. At αIR, the quark condensate ⟨q¯q⟩vac≠0 induces nine Nambu-Goldstone bosons: π,K,η, and a 0++ QCD dilaton σ. Physically, σ appears as the f0(500) resonance, a pole at a complex mass with real part ≲ mK. The ΔI=1/2 rule for nonleptonic K decays is then a consequence of χPTσ, with a KSσ coupling fixed by data for γγ→ππ and KS→γγ. We estimate RIR≈5 for the nonperturbative Drell-Yan ratio R=σ(e+e−→hadrons)/σ(e+e−→μ+μ−) at αIR and show that, in the many-color limit, σ/f0 becomes a narrow qq¯ state with planar-gluon corrections. Rules for the order of terms in χPTσ loop expansions are derived in Appendix A and extended in Appendix B to include inverse-power Li-Pagels singularities due to external operators. This relates to an observation that, for γγ channels, partial conservation of the dilatation current is not equivalent to σ-pole dominance.
Resumo:
The 3' ends of animal replication-dependent histone mRNAs are formed by endonucleolytic cleavage of the primary transcripts downstream of a highly conserved RNA hairpin. The hairpin-binding protein (HBP) binds to this RNA element and is involved in histone RNA 3' processing. A minimal RNA-binding domain (RBD) of approximately 73 amino acids that has no similarity with other known RNA-binding motifs was identified in human HBP [Wang Z-F et al., Genes & Dev, 1996, 10:3028-3040]. The primary sequence identity between human and Caenorhabditis elegans RBDs is 55% compared to 38% for the full-length proteins. We analyzed whether differences between C. elegans and human HBP and hairpins are reflected in the specificity of RNA binding. The C. elegans HBP and its RBD recognize only their cognate RNA hairpins, whereas the human HBP or RBD can bind both the mammalian and the C. elegans hairpins. This selectivity of C. elegans HBP is mostly mediated by the first nucleotide in the loop, which is C in C. elegans and U in all other metazoans. By converting amino acids in the human RBD to the corresponding C. elegans residues at places where the latter deviates from the consensus, we could identify two amino acid segments that contribute to selectivity for the first nucleotide of the hairpin loop.
Resumo:
Next-to-leading order analyses of the dilepton production rate from a hot QCD plasma are reviewed. In general, the photon invariant mass is taken to be in the range K2∼(πT)2, permitting thereby for an interpolation between an OPE computation in a hard regime K2≫(πT)2 and an LPM resummed computation in a soft regime 0
Resumo:
We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G . Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2) and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.
Resumo:
Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm−1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.
Resumo:
OBJECTIVES Readout-segmented echo planar imaging (rs-EPI) significantly reduces susceptibility artifacts in diffusion-weighted imaging (DWI) of the breast compared to single-shot EPI but is limited by longer scan times. To compensate for this, we tested a new simultaneous multi-slice (SMS) acquisition for accelerated rs-EPI. MATERIALS AND METHODS After approval by the local ethics committee, eight healthy female volunteers (age, 38.9±13.1 years) underwent breast MRI at 3T. Conventional as well as two-fold (2× SMS) and three-fold (3× SMS) slice-accelerated rs-EPI sequences were acquired at b-values of 50 and 800s/mm(2). Two independent readers analyzed the apparent diffusion coefficient (ADC) in fibroglandular breast parenchyma. The signal-to-noise ratio (SNR) was estimated based on the subtraction method. ADC and SNR were compared between sequences by using the Friedman test. RESULTS The acquisition time was 4:21min for conventional rs-EPI, 2:35min for 2× SMS rs-EPI and 1:44min for 3× SMS rs-EPI. ADC values were similar in all sequences (mean values 1.62×10(-3)mm(2)/s, p=0.99). Mean SNR was 27.7-29.6, and no significant differences were found among the sequences (p=0.83). CONCLUSION SMS rs-EPI yields similar ADC values and SNR compared to conventional rs-EPI at markedly reduced scan time. Thus, SMS excitation increases the clinical applicability of rs-EPI for DWI of the breast.
Resumo:
PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.