70 resultados para Pittsfield (Mich. : Township)--Maps
Resumo:
This chapter introduces a conceptual model to combine creativity techniques with fuzzy cognitive maps (FCMs) and aims to support knowledge management methods by improving expert knowledge acquisition and aggregation. The aim of the conceptual model is to represent acquired knowledge in a manner that is as computer-understandable as possible with the intention of developing automated reasoning in the future as part of intelligent information systems. The formal represented knowledge thus may provide businesses with intelligent information integration. To this end, we introduce and evaluate various creativity techniques with a list of attributes to define the most suitable to combine with FCMs. This proposed combination enables enhanced knowledge management through the acquisition and representation of expert knowledge with FCMs. Our evaluation indicates that the creativity technique known as mind mapping is the most suitable technique in our set. Finally, a scenario from stakeholder management demonstrates the combination of mind mapping with FCMs as an integrated system.
Resumo:
Our research project develops an intranet search engine with concept- browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text ana- lytics engine extracts knowledge structures from data inductively, and the en- terprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data rec- ords. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept- browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.
Resumo:
The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.
Resumo:
This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation.
Resumo:
A robust and reliable risk assessment procedure for hydrologic hazards deserves particular attention to the role of transported woody material during flash floods or debris flows. At present, woody material transport phenomena are not systematically considered within the procedures for the elaboration of hazard maps. The consequence is a risk of losing prediction accuracy and of underestimating hazard impacts. Transported woody material frequently interferes with the sediment regulation capacity of open check dams and moreover, when obstruction phenomena at critical crosssections of the stream occur, inundations can be triggered. The paper presents a procedure for the determination of the relative propensity of mountain streams to the entrainment and delivery of recruited woody material on the basis of empirical indicators. The procedure provided the basis for the elaboration of a hazard index map for all torrent catchments of the Autonomous Province of Bolzano/Bozen. The plausibility of the results has been thoroughly checked by a backward oriented analysis on natural hazard events, documented since 1998 at the Department of Hydraulic Engineering of the aforementioned Alpine Province. The procedure provides hints for the consideration of the effects, induced by woody material transport, during the elaboration of hazard zone maps.