51 resultados para Perte de charge
Resumo:
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).
Resumo:
Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (~60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangement of the solvent cage. This distribution reflects the inhomogeneous character of the solvent cage around iodide. Electron ejection occurs from the relaxed charge transfer to solvent states with lifetimes of 100–400 fs that increase with decreasing emission energy.
Resumo:
A measurement of the top quark electric charge is carried out in the ATLAS experiment at the Large Hadron Collider using 2.05 fb-1 of data at a centre-of-mass energy of 7 TeV. In units of the elementary electric charge, the top quark charge is determined to be 0.64 +- 0.02 (stat.) +- 0.08 (syst.) from the charges of the top quark decay products in single lepton ttbar candidate events. This excludes models that propose a heavy quark of electric charge --4/3, instead of the Standard Model top quark, with a significance of more than 8 sigma.
Resumo:
Two polycrystalline diamond surfaces, manufactured by chemical vapour deposition (CVD) technique, are investigated regarding their applicability as charge state conversion surfaces (CS) for use in a low energy neutral atom imaging instrument in space research. The capability of the surfaces for converting neutral atoms into negative ions via surface ionisation processes was measured for hydrogen and oxygen with particle energies in the range from 100 eV to 1 keV and for angles of incidence between 6 deg and 15 deg. We observed surface charging during the surface ionisation processes for one of the CVD samples due to low electrical conductivity of the material. Measurements on the other CVD diamond sample resulted in ionisation efficiencies of ~2 % for H and up to 12 % for O. Analysis of the angular scattering revealed very narrow and almost circular scattering distributions. Comparison of the results with the data of the CS of the IBEX-Lo sensor shows that CVD diamond has great potential as CS material for future space missions.
Resumo:
This paper presents a measurement of the top quark pair () production charge asymmetry A (C) using 4.7 fb(-1) of proton-proton collisions at a centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. A -enriched sample of events with a single lepton (electron or muon), missing transverse momentum and at least four high transverse momentum jets, of which at least one is tagged as coming from a b-quark, is selected. A likelihood fit is used to reconstruct the event kinematics. A Bayesian unfolding procedure is employed to estimate A (C) at the parton-level. The measured value of the production charge asymmetry is A (C) = 0.006 +/- 0.010, where the uncertainty includes both the statistical and the systematic components. Differential A (C) measurements as a function of the invariant mass, the rapidity and the transverse momentum of the system are also presented. In addition, A (C) is measured for a subset of events with large velocity, where physics beyond the Standard Model could contribute. All measurements are consistent with the Standard Model predictions.