53 resultados para Panoramic projections. Virtual Environments. Navigation in 3D environments. Virtual Reality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient’s wishes and to achieve the desired results. To date, most plastic surgeons rely on either “free hand” 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient’s face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of developing a successful stroke rehabilitation methodology requires four key components: a good understanding of the pathophysiological mechanisms underlying this brain disease, clear neuroscientific hypotheses to guide therapy, adequate clinical assessments of its efficacy on multiple timescales, and a systematic approach to the application of modern technologies to assist in the everyday work of therapists. Achieving this goal requires collaboration between neuroscientists, technologists and clinicians to develop well-founded systems and clinical protocols that are able to provide quantitatively validated improvements in patient rehabilitation outcomes. In this article we present three new applications of complementary technologies developed in an interdisciplinary matrix for acute-phase upper limb stroke rehabilitation – functional electrical stimulation, arm robot-assisted therapy and virtual reality-based cognitive therapy. We also outline the neuroscientific basis of our approach, present our detailed clinical assessment protocol and provide preliminary results from patient testing of each of the three systems showing their viability for patient use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Preclinical and clinical studies indicate that the administration of glucocorticoids may promote fear extinction processes. In particular, it has been shown that glucocorticoids enhance virtual reality based exposure therapy of fear of heights. Here, we investigate whether glucocorticoids enhance the outcome of in vivo exposure-based group therapy of spider phobia. METHODS: In a double blind, block-randomized, placebo-controlled, between-subject study design, 22 patients with specific phobia of spiders were treated with two sessions of in vivo exposure-based group therapy. Cortisol (20 mg) or placebo was orally administered 1 hr before each therapy session. Patients returned for a follow-up assessment one month after therapy. RESULTS: Exposure-based group therapy led to a significant decrease in phobic symptoms as assessed with the Fear of Spiders Questionnaire (FSQ) from pretreatment to immediate posttreatment and to follow-up. The administration of cortisol to exposure therapy resulted in increased salivary cortisol concentrations and a significantly greater reduction in fear of spiders (FSQ) as compared to placebo at follow-up, but not immediately posttreatment. Furthermore, cortisol-treated patients reported significantly less anxiety during standardized exposure to living spiders at follow-up than placebo-treated subjects. Notably, groups did not differ in phobia-unrelated state-anxiety before and after the exposure sessions and at follow-up. CONCLUSIONS: These findings indicate that adding cortisol to in vivo exposure-based group therapy of spider phobia enhances treatment outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of the gas flow field to changes in different initial conditions has been studied for the case of a highly simplified cometary nucleus model. The nucleus model simulated a homogeneously outgassing sphere with a more active ring around an axis of symmetry. The varied initial conditions were the number density of the homogeneous region, the surface temperature, and the composition of the flow (varying amounts of H2O and CO2) from the active ring. The sensitivity analysis was performed using the Polynomial Chaos Expansion (PCE) method. Direct Simulation Monte Carlo (DSMC) was used for the flow, thereby allowing strong deviations from local thermal equilibrium. The PCE approach can be used to produce a sensitivity analysis with only four runs per modified input parameter and allows one to study and quantify non-linear responses of measurable parameters to linear changes in the input over a wide range. Hence the PCE allows one to obtain a functional relationship between the flow field properties at every point in the inner coma and the input conditions. It is for example shown that the velocity and the temperature of the background gas are not simply linear functions of the initial number density at the source. As probably expected, the main influence on the resulting flow field parameter is the corresponding initial parameter (i.e. the initial number density determines the background number density, the temperature of the surface determines the flow field temperature, etc.). However, the velocity of the flow field is also influenced by the surface temperature while the number density is not sensitive to the surface temperature at all in our model set-up. Another example is the change in the composition of the flow over the active area. Such changes can be seen in the velocity but again not in the number density. Although this study uses only a simple test case, we suggest that the approach, when applied to a real case in 3D, should assist in identifying the sensitivity of gas parameters measured in situ by, for example, the Rosetta spacecraft to the surface boundary conditions and vice versa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Crossing a street can be a very difficult task for older pedestrians. With increased age and potential cognitive decline, older people take the decision to cross a street primarily based on vehicles' distance, and not on their speed. Furthermore, older pedestrians tend to overestimate their own walking speed, and could not adapt it according to the traffic conditions. Pedestrians' behavior is often tested using virtual reality. Virtual reality presents the advantage of being safe, cost-effective, and allows using standardized test conditions. METHODS: This paper describes an observational study with older and younger adults. Street crossing behavior was investigated in 18 healthy, younger and 18 older subjects by using a virtual reality setting. The aim of the study was to measure behavioral data (such as eye and head movements) and to assess how the two age groups differ in terms of number of safe street crossings, virtual crashes, and missed street crossing opportunities. Street crossing behavior, eye and head movements, in older and younger subjects, were compared with non-parametric tests. RESULTS: The results showed that younger pedestrians behaved in a more secure manner while crossing a street, as compared to older people. The eye and head movements analysis revealed that older people looked more at the ground and less at the other side of the street to cross. CONCLUSIONS: The less secure behavior in street crossing found in older pedestrians could be explained by their reduced cognitive and visual abilities, which, in turn, resulted in difficulties in the decision-making process, especially under time pressure. Decisions to cross a street are based on the distance of the oncoming cars, rather than their speed, for both groups. Older pedestrians look more at their feet, probably because of their need of more time to plan precise stepping movement and, in turn, pay less attention to the traffic. This might help to set up guidelines for improving senior pedestrians' safety, in terms of speed limits, road design, and mixed physical-cognitive trainings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. METHODS The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. RESULTS Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). CONCLUSIONS This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraoperative laparoscopic calibration remains a challenging task. In this work we present a new method and instrumentation for intraoperative camera calibration. Contrary to conventional calibration methods, the proposed technique allows intraoperative laparoscope calibration from single perspective observations, resulting in a standardized scheme for calibrating in a clinical scenario. Results show an average displacement error of 0.52 ± 0.19 mm, indicating sufficient accuracy for clinical use. Additionally, the proposed method is validated clinically by performing a calibration during the surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.