80 resultados para PROTEASOMAL DEGRADATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red (Trifolium pratense L., cv. “Start”) and white clover varieties (Trifolium repens L., cv. “Debut” and cv. “Haifa”) were waterlogged for 14 days and subsequently recovered for the period of 21 days. Physiological and biochemical responses of the clover varieties were distinctive, which suggested different sensitivity toward flooding. The comparative study of morphological and biochemical parameters such as stem length, leaflet area, dry weight, protein content, protein pattern and proteolytic degradation revealed prominent changes under waterlogging conditions. Protease activity in the stressed plants increased significantly, especially in red clover cv. “Start”, which exhibited eightfold higher azocaseinolytic activity compared to the control. Changes in the protein profiles were detected by SDS-PAGE electrophoresis. The specific response of some proteins (Rubisco, Rubisco-binding protein, Rubisco activase, ClpA and ClpP protease subunits) toward the applied stress was assessed by immunoblotting. The results characterized the red clover cultivar “Start” as the most sensitive toward waterlogging, expressing reduced levels of Rubisco large and small subunits, high content of ClpP protease subunits and increased activity of protease isoforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desertification research conventionally focuses on the problem – that is, degradation – while neglecting the appraisal of successful conservation practices. Based on the premise that Sustainable Land Management (SLM) experiences are not sufficiently or comprehensively documented, evaluated, and shared, the World Overview of Conservation Approaches and Technologies (WOCAT) initiative (www.wocat.net), in collaboration with FAO’s Land Degradation Assessment in Drylands (LADA) project (www.fao.org/nr/lada/) and the EU’s DESIRE project (http://www.desire-project.eu/), has developed standardised tools and methods for compiling and evaluating the biophysical and socio-economic knowledge available about SLM. The tools allow SLM specialists to share their knowledge and assess the impact of SLM at the local, national, and global levels. As a whole, the WOCAT–LADA–DESIRE methodology comprises tools for documenting, self-evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing and decision support in the field, at the planning level, and in scaling up identified good practices. SLM depends on flexibility and responsiveness to changing complex ecological and socioeconomic causes of land degradation. The WOCAT tools are designed to reflect and capture this capacity of SLM. In order to take account of new challenges and meet emerging needs of WOCAT users, the tools are constantly further developed and adapted. Recent enhancements include tools for improved data analysis (impact and cost/benefit), cross-scale mapping, climate change adaptation and disaster risk management, and easier reporting on SLM best practices to UNCCD and other national and international partners. Moreover, WOCAT has begun to give land users a voice by backing conventional documentation with video clips straight from the field. To promote the scaling up of SLM, WOCAT works with key institutions and partners at the local and national level, for example advisory services and implementation projects. Keywords: Sustainable Land Management (SLM), knowledge management, decision-making, WOCAT–LADA–DESIRE methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested whether OPAHs were formed during 19-wk incubation of a fertile soil at optimum moisture in the dark. The soil had initial mean (±s.e., n = 3) concentrations of 22 ± 1.7 (Σ28PAHs) and 4.2 ± 0.34 μg g−1 (Σ14OPAHs). After 19 wk, individual PAH and OPAH concentrations had decreased by up to 14 and 37%, respectively. Decreases in % of initial concentrations were positively correlated with their KOW values for PAHs (r = 0.48, p = 0.022) and 9 OPAHs (r = 0.78, p = 0.013) but negatively, albeit not significantly, for 5 OPAHs (r = −0.75, p = 0.145) suggesting net formation of some OPAHs. The latter was supported by significantly increasing 1-indanone/fluorene ratios while the other OPAH to parent-PAH ratios remained constant or tended to increase. We conclude that OPAHs are formed in soils during microbial turnover of PAHs in a short time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Acute thrombotic microangiopathies (TMAs) are characterized by excessive microvascular thrombosis and are associated with markers of neutrophil extracellular traps (NETs) in plasma. NETs are composed of DNA fibers and promote thrombus formation through the activation of platelets and clotting factors. OBJECTIVE The efficient removal of NETs may be required to prevent excessive thrombosis such as in TMAs. To test this hypothesis, we investigated whether TMAs are associated with a defect in the degradation of NETs. APPROACH AND RESULTS We show that NETs generated in vitro were efficiently degraded by plasma from healthy donors. However, NETs remained stable after exposure to plasma from TMA patients. The inability to degrade NETs was linked to a reduced DNase activity in TMA plasma. Plasma DNase1 was required for efficient NET-degradation and TMA plasma showed decreased levels of this enzyme. Supplementation of TMA plasma with recombinant human DNase1 restored NET-degradation activity. CONCLUSIONS Our data indicates that DNase1-mediated degradation of NETs is impaired in patients with TMAs. The role of plasma DNases in thrombosis is, as of yet, poorly understood. Reduced plasma DNase1 activity may cause the persistence of pro-thrombotic NETs and thus promote microvascular thrombosis in TMA patients. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No treatment is available for patients affected by the recessively inherited, progressive muscular dystrophies caused by a deficiency in the muscle membrane repair protein dysferlin. A marked reduction in dysferlin in patients harboring missense mutations in at least one of the two pathogenic DYSF alleles encoding dysferlin implies that dysferlin is degraded by the cell's quality control machinery. In vitro evidence suggests that missense mutated dysferlin might be functional if salvaged from degradation by the proteasome. We treated three patients with muscular dystrophy due to a homozygous Arg555Trp mutation in dysferlin with the proteasome inhibitor bortezomib and monitored dysferlin expression in monocytes and in skeletal muscle by repeated percutaneous muscle biopsy. Expression of missense mutated dysferlin in the skeletal muscle and monocytes of the three patients increased markedly, and dysferlin was correctly localized to the sarcolemma of muscle fibers on histological sections. Salvaged missense mutated dysferlin was functional in a membrane resealing assay in patient-derived muscle cells treated with three different proteasome inhibitors. We conclude that interference with the proteasomal system increases expression of missense mutated dysferlin, suggesting that this therapeutic strategy may benefit patients with dysferlinopathies and possibly other genetic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Nepal, changing demographic patterns are leading to changes in land use. The high level of outmigration of men in the hills of Kaski District, Western Development Region of Nepal, is affecting the household structure but also land management. Land is often abandoned, as the burden on those left behind is too high. How do these developments affect the state of the land in terms of land degradation? To find out, we studied land degradation, land abandonment caused by outmigration, and existing sustainable land management practices in a subwatershed in Kaski District. Mapping was done using the methodology of the World Overview of Conservation Approaches and Technologies (WOCAT). While previous studies expected land abandonment to exacerbate slope erosion, we demonstrate in this paper that it is in fact leading to an increase in vegetation cover due to favourable conditions for ecosystem recovery. However, negative impacts are several, including the increase of invasive species harmful to livestock and a decline in soil fertility. Traditional land management practices such as terraces and forest management exist. To date, however, these measures fail to take account of the changing population dynamics in the region, making the question of how migration and land degradation are linked worth revisiting.