70 resultados para PPAR-gamma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxynitrite, a powerful mutagenic oxidant and nitrating species, is formed by the near diffusion-limited reaction of .NO and O2.- during activation of phagocytes. Chronic inflammation induced by phagocytes is a major contributor to cancer and other degenerative diseases. We examined how gamma-tocopherol (gammaT), the principal form of vitamin E in the United States diet, and alpha-tocopherol (alphaT), the major form in supplements, protect against peroxynitrite-induced lipid oxidation. Lipid hydroperoxide formation in liposomes (but not isolated low-density lipoprotein) exposed to peroxynitrite or the .NO and O2.- generator SIN-1 (3-morpholinosydnonimine) was inhibited more effectively by gammaT than alphaT. More importantly, nitration of gammaT at the nucleophilic 5-position, which proceeded in both liposomes and human low density lipoprotein at yields of approximately 50% and approximately 75%, respectively, was not affected by the presence of alphaT. These results suggest that despite alphaT's action as an antioxidant gammaT is required to effectively remove the peroxynitrite-derived nitrating species. We postulate that gammaT acts in vivo as a trap for membrane-soluble electrophilic nitrogen oxides and other electrophilic mutagens, forming stable carbon-centered adducts through the nucleophilic 5-position, which is blocked in alphaT. Because large doses of dietary alphaT displace gammaT in plasma and other tissues, the current wisdom of vitamin E supplementation with primarily alphaT should be reconsidered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Pulmonary complications of hematopoietic stem cell transplantation include infections and graft-versus-host diseases, such as idiopathic pneumonia syndrome (IPS). Conflicting data exist regarding the role of the interferon (IFN)-gamma-producing Th1 CD4(+) T-cell subset and IL-17A in IPS. OBJECTIVES: To determine the role of IFN-gamma and IL-17A in the establishment of pulmonary graft-versus-host disease. METHODS: A semiallogeneic murine model based on C57BL/6 x BALB/c as recipients with transplantation of BALB/c RAG2(-/-) bone marrow and transfer of different genetic knockout T cells (T-bet(-/-), IFN-gamma(-/-), IFN-gammaR(-/-)) on a BALB/c background. Lung tissue was examined for parenchymal changes and infiltrating cells by histology and fluorescence-activated cell sorter analysis. MEASUREMENTS AND MAIN RESULTS: After transfer of semiallogeneic bone marrow together with donor CD4(+) T cells lacking IFN-gamma or T-bet-a T-box transcription factor controlling Th1 commitment-we found severe inflammation in the lungs, but no enhancement in other organs. In contrast, wild-type donor CD4(+) T cells mediated minimal inflammation only, and donor CD8(+) T cells were not required for IPS development. Mechanistically, the absence of IFN-gamma or IFN-gamma signaling in pulmonary parenchymal cells promoted expansion of IL-17A-producing CD4(+) T cells and local IL-17A release. In vivo depletion of IL-17A reduced disease severity. CONCLUSIONS: One mechanism of IFN-gamma protection against IPS is negative regulation of the expansion of pathogenic IL-17A-producing CD4(+) T cells through interaction with the IFN-gamma receptor on the pulmonary parenchymal cell population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Reactivation of latent tuberculosis (TB) in inflammatory bowel disease (IBD) patients treated with antitumor necrosis factor-alpha medication is a serious problem. Currently, TB screening includes chest x-rays and a tuberculin skin test (TST). The interferon-gamma release assay (IGRA) QuantiFERON-TB Gold In-Tube (QFT-G-IT) shows better specificity for diagnosing TB than the skin test. This study evaluates the two test methods among IBD patients. METHODS: Both TST and IGRA were performed on 212 subjects (114 Crohn's disease, 44 ulcerative colitis, 10 indeterminate colitis, 44 controls). RESULTS: Eighty-one percent of IBD patients were under immunosuppressive therapy; 71% of all subjects were vaccinated with Bacille Calmette Guérin; 18% of IBD patients and 43% of controls tested positive with the skin test (P < 0.0001). Vaccinated controls tested positive more often with the skin test (52%) than did vaccinated IBD patients (23%) (P = 0.011). Significantly fewer immunosuppressed patients tested positive with the skin test than did patients not receiving therapy (P = 0.007); 8% of patients tested positive with the QFT-G-IT test (14/168) compared to 9% (4/44) of controls. Test agreement was significantly higher in the controls (P = 0.044) compared to the IBD group. CONCLUSIONS: Agreement between the two test methods is poor in IBD patients. In contrast to the QFT-G-IT test, the TST is negatively influenced by immunosuppressive medication and vaccination status, and should thus be replaced by the IGRA for TB screening in immunosuppressed patients having IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for gamma-radiation biodosimetry in a mouse model. Mice were gamma-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and beta-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose-response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to gamma radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In tuberculosis (TB), the risk of exposure is determined mainly by the proximity to and the hours of direct contact with an infectious patient. We describe the contact investigation after detection of an infectious form of TB in a military camp using an Interferon-g-Release-Assay (IGRA, QuantiFERON-TB Gold In Tube [QTF-GIT]) eight weeks after detection of the index case. INDEX PATIENT: The index patient presented with fever, cough and weight loss in the military hospital six weeks after entering the camp. TB was suspected and anti-tuberculous therapy given immediately. Subsequently, TB was microbiologically confirmed. METHODS: Four exposure groups were formed a priori based on the proximity and the hours of direct contact to the index case. 168 (95.5%) agreed to be investigated: - Group A: sharing the same dormitory (15 persons) - Group B: same platoon, but not sharing the dormitory (20 persons) - Group C: staff and patients of the military hospital (22 persons) - Group D: other three platoons and senior military staff (111 persons). RESULTS: 34 (20.2%) out of 168 contacts tested positive in the QFT-GIT assay. For the exposure groups, the respective QFT-GIT testing results were: group A, 14/15 (93%); group B, 4/20 (20%); group C, 5/22 (22.7%); and group D, 11/111 (9.9%). No secondary TB cases were identified. CONCLUSIONS: In our study, test results show a correlation with the risk of exposure, suggesting that IGRA may be useful for the assessment of TB infection in TB contacts. The high mobility of recruits reduced traceability of contacts. In this context, QFT-GIT allowed for an efficient screening of contacts at a single time point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2'-deoxyuridine, 2'-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2'-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2'-deoxyuridine and 2'-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2'-deoxycytidine and 2'-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.