75 resultados para PAX-9 gene
Resumo:
BACKGROUND: We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. METHODS: We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. RESULTS: All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxification of purine metabolites. Nine patients had immune reconstitution with increases in T-cell counts (median count at 3 years, 1.07x10(9) per liter) and normalization of T-cell function. In the five patients in whom intravenous immune globulin replacement was discontinued, antigen-specific antibody responses were elicited after exposure to vaccines or viral antigens. Effective protection against infections and improvement in physical development made a normal lifestyle possible. Serious adverse events included prolonged neutropenia (in two patients), hypertension (in one), central-venous-catheter-related infections (in two), Epstein-Barr virus reactivation (in one), and autoimmune hepatitis (in one). CONCLUSIONS: Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency. (ClinicalTrials.gov numbers, NCT00598481 and NCT00599781.)
Resumo:
Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H) in the MCT8 gene that was sequenced directly from genomic DNA and occurred de novo in the maternal germline, as both his mother and his sister were not carriers of the mutation. Ruling out a common polymorphism, 50 normal individuals of the same ethnic background did not harbour the mutation. The identified MCT8 gene mutation (R271H) is very likely to be the genetic cause for neuronal hypothyroidism despite elevated serum T3 levels.
Resumo:
Classic cystic fibrosis (CF) is caused by two loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, whereas patients with nonclassic CF have at least one copy of a mutant gene that retains partial function of the CFTR protein. In addition, there are several other phenotypes associated with CFTR gene mutations, such as idiopathic chronic pancreatitis. In CFTR-associated disorders and in nonclassic CF, often only one CFTR mutation or no CFTR mutations can be detected. In this study, we screened 23 patients with CFTR-associated disorders for CFTR mutations by complete gene testing and quantitative transcript analysis. Mutations were found in 10 patients. In cells from respiratory epithelium, we detected aberrant splicing of CFTR mRNA in all investigated individuals. We observed a highly significant association between the presence of coding single-nucleotide polymorphisms (coding SNPs, or cSNPs) and increased skipping of exon 9 and 12. This association was found both in patients and in normal individuals carrying the same cSNPs. The cSNPs c.1540A>G, c.2694T>G, and c.4521G>A may have affected pre-mRNA splicing by changing regulatory sequence motifs of exonic splice enhancers, leading to lower amounts of normal transcripts. The analysis of CFTR exons indicated that less frequent and weak exonic splicing enhancer (ESE) motifs make exon 12 vulnerable to skipping. The number of splice variants in individuals with cSNPs was similar to previously reported values for the T5 allele, suggesting that cSNPs may enhance susceptibility to CFTR related diseases. In addition, cSNPs may be responsible for variation in the phenotypic expression of CFTR mutations. Quantitative approaches rather than conventional genomic analysis are required to interpret the role of cSNPs.
Resumo:
The family of Eph receptor tyrosine kinases and their membrane bound ligands, the ephrins, are involved in a wide variety of morphogenic processes during embryonic development and adult tissue homeostasis. Receptor-ligand interaction requires direct cell-cell contact and results in forward and reverse signaling originating from the receptor and ligand, respectively. We have previously shown that EphB4 and ephrinB2 are differentially expressed during the development of the adult mammary parenchyma. Overexpression of EphB4 in the mammary epithelium of transgenic mice leads to perturbations in mammary epithelial morphology, motility and growth. To investigate the role of ephrinB2 signaling in mammary gland biology, we have established transgenic mice exhibiting conditional ephrinB2 knockout in the mammary epithelium. In homozygote double transgenic CreLox mice, specific knockout of ephrinB2 occurred in the mammary epithelium during the first pregnancy-lactating period. Abolishing ephrinB2 function led to severe interference with the architecture and functioning of the mammary gland at lactation. The morphology of the transgenic lactating glands resembled that of involuting controls, with decreased epithelial cell number and collapsed lobulo-alveolar structures. Accordingly, massive epithelial cell death and expression of involution-specific genes were observed. Interestingly, in parallel to cell death, significant cell proliferation was apparent, suggestive of tissue regeneration.
Resumo:
We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.
Resumo:
Pasteurella multocida is commonly found in the oral cavity of cats and dogs. In humans it is known as an opportunistic pathogen after bites from these animals. Phenotypic identification of P. multocida based on biochemical reactions is often limited and usually only done on a species level, even though 3 subspecies are described. For molecular taxonomy and diagnostic purposes a phylogenetic analysis of the three subspecies of P. multocida based on their 16S rRNA (rrs) gene sequence was therefore carried out. We found P. multocida subsp. septica on a distinguished branch on the phylogenetic tree of Pasteurellaceae, due to a 1.5% divergence of its rrs gene compared to the two other, more closely related subspecies multocida and gallicida. This phylogenetic divergence can be used for the identification of P. multocida subsp. septica by rrs gene determination since they form a phylogenetically well isolated and defined group as shown with a set of feline isolates. Comparison to routine phenotypic identification shows the advantage of the sequence-based identification over conventional methods. It is therefore helpful for future unambiguous identification and molecular taxonomy of P. multocida as well as for epidemiological investigations.
Resumo:
Hereditary nasal parakeratosis (HNPK), an inherited monogenic autosomal recessive skin disorder, leads to crusts and fissures on the nasal planum of Labrador Retrievers. We performed a genome-wide association study (GWAS) using 13 HNPK cases and 23 controls. We obtained a single strong association signal on chromosome 2 (p(raw) = 4.4×10⁻¹⁴). The analysis of shared haplotypes among the 13 cases defined a critical interval of 1.6 Mb with 25 predicted genes. We re-sequenced the genome of one case at 38× coverage and detected 3 non-synonymous variants in the critical interval with respect to the reference genome assembly. We genotyped these variants in larger cohorts of dogs and only one was perfectly associated with the HNPK phenotype in a cohort of more than 500 dogs. This candidate causative variant is a missense variant in the SUV39H2 gene encoding a histone 3 lysine 9 (H3K9) methyltransferase, which mediates chromatin silencing. The variant c.972T>G is predicted to change an evolutionary conserved asparagine into a lysine in the catalytically active domain of the enzyme (p.N324K). We further studied the histopathological alterations in the epidermis in vivo. Our data suggest that the HNPK phenotype is not caused by hyperproliferation, but rather delayed terminal differentiation of keratinocytes. Thus, our data provide evidence that SUV39H2 is involved in the epigenetic regulation of keratinocyte differentiation ensuring proper stratification and tight sealing of the mammalian epidermis.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
CONTEXT Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Müllerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.
Resumo:
Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.
Resumo:
The search for a specific rRNA methylase motif led to the identification of the new macrolide, lincosamide, and streptogramin B resistance gene erm(43) in Staphylococcus lentus. An inducible resistance phenotype was demonstrated by cloning and expressing erm(43) and its regulatory region in Staphylococcus aureus. The erm(43) gene was detected in two different DNA fragments, of 6,230 bp and 1,559 bp, that were each integrated at the same location in the chromosome in several S. lentus isolates of human, dog, and chicken origin.
Resumo:
Congenital hepatic fibrosis has been described as a lethal disease with monogenic autosomal recessive inheritance in the Swiss Franches-Montagnes horse breed. We performed a genome-wide association study with 5 cases and 12 controls and detected an association on chromosome 20. Subsequent homozygosity mapping defined a critical interval of 952 kb harboring 10 annotated genes and loci including the polycystic kidney and hepatic disease 1 (autosomal recessive) gene (PKHD1). PKHD1 represents an excellent functional candidate as variants in this gene were identified in human patients with autosomal recessive polycystic kidney and hepatic disease (ARPKD) as well as several mouse and rat mutants. Whereas most pathogenic PKHD1 variants lead to polycystic defects in kidney and liver, a small subset of the human ARPKD patients have only liver symptoms, similar to our horses with congenital hepatic fibrosis. The PKHD1 gene is one of the largest genes in the genome with multiple alternative transcripts that have not yet been fully characterized. We sequenced the genomes of an affected foal and 46 control horses to establish a comprehensive list of variants in the critical interval. We identified two missense variants in the PKHD1 gene which were strongly, but not perfectly associated with congenital hepatic fibrosis. We speculate that reduced penetrance and/or potential epistatic interactions with hypothetical modifier genes may explain the imperfect association of the detected PKHD1 variants. Our data thus indicate that horses with congenital hepatic fibrosis represent an interesting large animal model for the liver-restricted subtype of human ARPKD.
Resumo:
Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.