81 resultados para Orientation of space
Resumo:
Using navigation systems in general orthopaedic surgery and, in particular, knee replacement is becoming more and more accepted. This paper describes the basic technological concepts of modern computer assisted surgical systems. It explains the variation in currently available systems and outlines research activities that will potentially influence future products. In general, each navigation system is defined by three components: (1) the therapeutic object is the anatomical structure that is operated on using the navigation system, (2) the virtual object represents an image of the therapeutic object, with radiological images or computer generated models potentially being used, and (3) last but not least, the navigator acquires the spatial position and orientation of instruments and anatomy thus providing the necessary data to replay surgical action in real-time on the navigation system's screen.
Resumo:
Benzodiazepines are widely used drugs. They exert sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects and act through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid type A (GABA(A)) receptor. Ligands of the benzodiazepine-binding site are classified into three groups depending on their mode of action: positive and negative allosteric modulators and antagonists. To rationally design ligands of the benzodiazepine site in different isoforms of the GABA(A) receptor, we need to understand the relative positioning and overlap of modulators of different allosteric properties. To solve these questions, we used a proximity-accelerated irreversible chemical coupling reaction. GABA(A) receptor residues thought to reside in the benzodiazepine-binding site were individually mutated to cysteine and combined with a cysteine-reactive benzodiazepine site ligand. Direct apposition of reaction partners is expected to lead to a covalent reaction. We describe here such a reaction of predominantly alpha(1)H101C and also three other mutants (alpha(1)G157C, alpha(1)V202C, and alpha(1)V211C) with an Imid-NCS derivative in which a reactive isothiocyanate group (-NCS) replaces the azide group (-N(3)) in the partial negative allosteric modulator Ro15-4513. Our results show four contact points of imidazobenzodiazepines with the receptor, alpha(1)H101C being shared by classical benzodiazepines. Taken together with previous data, a similar orientation of these ligands within the benzodiazepine-binding pocket may be proposed.
Resumo:
We performed a Rey visual design learning test (RVDLT) in 17 subjects and measured intervoxel coherence (IC) by DTI as an indication of connectivity to investigate if visual memory performance would depend on white matter structure in healthy persons. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index. Voxel-based t-test analysis of the IC values was used to identify neighboring voxel clusters with significant differences between 7 low and 10 high test performers. We detected 9 circumscribed significant clusters (p< .01) with lower IC values in low performers than in high performers, with centers of gravity located in left and right superior temporal region, corpus callosum, left superior longitudinal fascicle, and left optic radiation. Using non-parametric correlation analysis, IC and memory performance were significantly correlated in each of the 9 clusters (r< .61 to r< .81; df=15, p< .01 to p< .0001). The findings provide in vivo evidence for the contribution of white matter structure to visual memory in healthy people.
Resumo:
The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.
Resumo:
The general model The aim of this chapter is to introduce a structured overview of the different possibilities available to display and analyze brain electric scalp potentials. First, a general formal model of time-varying distributed EEG potentials is introduced. Based on this model, the most common analysis strategies used in EEG research are introduced and discussed as specific cases of this general model. Both the general model and particular methods are also expressed in mathematical terms. It is however not necessary to understand these terms to understand the chapter. The general model that we propose here is based on the statement made in Chapter 3, stating that the electric field produced by active neurons in the brain propagates in brain tissue without delay in time. Contrary to other imaging methods that are based on hemodynamic or metabolic processes, the EEG scalp potentials are thus “real-time,” not delayed and not a-priori frequency-filtered measurements. If only a single dipolar source in the brain were active, the temporal dynamics of the activity of that source would be exactly reproduced by the temporal dynamics observed in the scalp potentials produced by that source. This is illustrated in Figure 5.1, where the expected EEG signal of a single source with spindle-like dynamics in time has been computed. The dynamics of the scalp potentials exactly reproduce the dynamics of the source. The amplitude of the measured potentials depends on the relation between the location and orientation of the active source, its strength and the electrode position.
Resumo:
Methodological approaches in which data on nonverbal behavior are collected usually involve interpretive methods in which raters must identify a set of defined categories of behavior. However, present knowledge about the qualitative aspects of head movement behavior calls for recording detailed transcriptions of behavior. These records are a prerequisite for investigating the function and meaning of head movement patterns. A method for directly collecting data on head movement behavior is introduced. Using small ultrasonic transducers, which are attached to various parts of an index person's body (head and shoulders), a microcomputer defines receiver-transducers distances. Three-dimensional positions are calculated by triangulation. These data are used for further calculations concerning the angular orientation of the head and the direction, size, and speed of head movements (in rotational, lateral, and sagittal dimensions).
Resumo:
Map landscape-based segmentation of the sequences of momentary potential distribution maps (42-channel recordings) into brain microstates during spontaneous brain activity was used to study brain electric field spatial effects of single doses of piracetam (2.9, 4.8, and 9.6 g Nootropil® UCB and placebo) in a double-blind study of five normal young volunteers. Four 15-second epochs were analyzed from each subject and drug condition. The most prominent class of microstates (covering 49% of the time) consisted of potential maps with a generally anterior-posterior field orientation. The map orientation of this microstate class showed an increasing clockwise deviation from the placebo condition with increasing drug doses (Fisher's probability product, p < 0.014). The results of this study suggest the use of microstate segmentation analysis for the assessment of central effects of medication in spontaneous multichannel electroencephalographic data, as a complementary approach to frequency-domain analysis.
Resumo:
The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters 1], whose polar subcellular localization determines the flow directionality. PIN-mediated auxin transport mediates the spatial and temporal activity of the auxin response machinery 2-7] that contributes to embryo patterning processes, including establishment of the apical (shoot) and basal (root) embryo poles 8]. However, little is known of upstream mechanisms guiding the (re)polarization of auxin fluxes during embryogenesis 9]. Here, we developed a model of plant embryogenesis that correctly generates emergent cell polarities and auxin-mediated sequential initiation of apical-basal axis of plant embryo. The model relies on two precisely localized auxin sources and a feedback between auxin and the polar, subcellular PIN transporter localization. Simulations reproduced PIN polarity and auxin distribution, as well as previously unknown polarization events during early embryogenesis. The spectrum of validated model predictions suggests that our model corresponds to a minimal mechanistic framework for initiation and orientation of the apical-basal axis to guide both embryonic and postembryonic plant development.
Resumo:
Identifying a human body stimulus involves mentally rotating an embodied spatial representation of one's body (motoric embodiment) and projecting it onto the stimulus (spatial embodiment). Interactions between these two processes (spatial and motoric embodiment) may thus reveal cues about the underlying reference frames. The allocentric visual reference frame, and hence the perceived orientation of the body relative to gravity, was modulated using the York Tumbling Room, a fully furnished cubic room with strong directional cues that can be rotated around a participant's roll axis. Sixteen participants were seated upright (relative to gravity) in the Tumbling Room and made judgments about body and hand stimuli that were presented in the frontal plane at orientations of 0°, 90°, 180° (upside down), or 270° relative to them. Body stimuli have an intrinsic visual polarity relative to the environment whereas hands do not. Simultaneously the room was oriented 0°, 90°, 180° (upside down), or 270° relative to gravity resulting in sixteen combinations of orientations. Body stimuli were more accurately identified when room and body stimuli were aligned. However, such congruency did not facilitate identifying hand stimuli. We conclude that static allocentric visual cues can affect embodiment and hence performance in an egocentric mental transformation task. Reaction times to identify either hands or bodies showed no dependence on room orientation.
Resumo:
Abstract concepts like numbers or time are thought to be represented in the more concrete domain of space and the sensorimotor system. For example, thinking of past or future events has a physical manifestation in backward or forward body sway, respectively. In the present study, we investigated the reverse effect: can passive whole-body motion influence the processing of temporal information? Participants were asked to categorize verbal stimuli to the concepts future or past while they were displaced forward and backward (Experiment 1), or upward and downward (Experiment 2). The results showed that future related verbal stimuli were categorized faster during forward as compared to backward motion. This finding supports the view that temporal events are represented along a mental time line and that the sensorimotor system is linked to that representation. We showed that body motion is not just an epiphenomenon of temporal thoughts. Passive whole-body motion can influence higher-order temporal cognition.
Resumo:
Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4′-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of [similar]70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of [similar]140 μm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into −P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of [similar]20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (DA), (AA), (DD) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.
Resumo:
This article compares family values and family future orientation between German and Russian adolescents. Based on different cultural values in Germany and Russia a higher family orientation of Russian as compared to German adolescents was assumed. Adolescents from both countries responded to a questionnaire of general and family-related values and family-related future orientation in the framework of the VOC-study. Results showed that for both German and Russian adolescents a future family of one's own is of high importance. The majority of adolescents from both countries (and both genders) reported wanting to get married in the future and to have (preferably two) children. Russian as compared to German adolescents reported a higher importance of traditional family values and child-related values (value of children), as well as a stronger desire to have children. Russian girls were most likely to abandon own career plans for the benefit of a future family. The results are discussed with regard to psychological models of cultural values' and the notion of a regaining strength of traditional family values in the course of social change in Germany and Russia.
Resumo:
We present the synthesis of the two novel nucleosides iso-tc-T and bcen-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6’–C7’ within the carbocyclic ring is planarized by either the presence of a C6’–C7’ double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2’-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bcen-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3’-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that Tm data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.
Resumo:
We measured the elemental composition on a sample of Allende meteorite with a miniature laser ablation mass spectrometer. This Laser Mass Spectrometer (LMS) has been designed and built at the University of Bern in the Department of Space Research and Planetary Sciences with the objective of using such an instrument on a space mission. Utilising the meteorite Allende as the test sample in this study, it is demonstrated that the instrument allows the in situ determination of the elemental composition and thus mineralogy and petrology of untreated rocky samples, particularly on planetary surfaces. In total, 138 measurements of elemental compositions have been carried out on an Allende sample. The mass spectrometric data are evaluated and correlated with an optical image. It is demonstrated that by illustrating the measured elements in the form of mineralogical maps, LMS can serve as an element imaging instrument with a very high spatial resolution of µm scale. The detailed analysis also includes a mineralogical evaluation and an investigation of the volatile element content of Allende. All findings are in good agreement with published data and underline the high sensitivity, accuracy and capability of LMS as a mass analyser for space exploration.