52 resultados para Optically pumped


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the feasibility of obtaining a spatially resolved picture of Ca2+Ca2+ inward currents (ICaICa) in multicellular cardiac tissue by differentiating optically recorded Ca2+Ca2+ transients that accompany propagating action potentials. Patterned growth strands of neonatal rat ventricular cardiomyocytes were stained with the Ca2+Ca2+ indicators Fluo-4 or Fluo-4FF. Preparations were stimulated at 1 Hz, and Ca2+Ca2+ transients were recorded with high spatiotemporal resolution (50  μm50  μm, 2 kHz analog bandwidth) with a photodiode array. Signals were differentiated after appropriate digital filtering. Differentiation of Ca2+Ca2+ transients resulted in optically recorded calcium currents (ORCCs) that carried the temporal and pharmacological signatures of L-type Ca2+Ca2+ inward currents: the time to peak amounted to ∼2.1  ms∼2.1  ms (Fluo-4FF) and ∼2.4  ms∼2.4  ms (Fluo-4), full-width at half-maximum was ∼8  ms∼8  ms, and ORCCs were completely suppressed by 50  μmol/L50  μmol/LCdCl2CdCl2. Also, and as reported before from patch-clamp studies, caffeine reversibly depressed the amplitude of ORCCs. The results demonstrate that the differentiation of Ca2+Ca2+ transients can be used to obtain a spatially resolved picture of the initial phase of ICaICa in cardiac tissue and to assess relative changes of activation/fast inactivation of ICaICa following pharmacological interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amino-keto tautomer of supersonic jet-cooled cytosine undergoes intersystem crossing (ISC) from the v = 0 and low-lying vibronic levels of its S1(¹ππ*) state. We investigate these ISC rates experimentally and theoretically as a function of S1 state vibrational excess energy Eexc. The S1 vibronic levels are pumped with a ~5 ns UV laser, the S1 and triplet state ion signals are separated by prompt or delayed ionization with a second UV laser pulse. After correcting the raw ISC yields for the relative S1 and T1ionization cross sections, we obtain energy dependent ISC quantum yields Q corr ISC =1% –5%. These are combined with previously measured vibronic state-specific decay rates, giving ISC rates kISC = 0.4–1.5 ⋅ 10⁹ s⁻¹, the corresponding S1⇝S0internal conversion (IC) rates are 30–100 times larger. Theoretical ISC rates are computed using SCS-CC2 methods, which predict rapid ISC from the S1; v = 0 state with kISC = 3 ⋅ 10⁹ s⁻¹ to the T1(³ππ*) triplet state. The surprisingly high rate of this El Sayed-forbidden transition is caused by a substantial admixture of ¹nOπ* character into the S1(¹ππ*) wave function at its non-planar minimum geometry. The combination of experiment and theory implies that (1) below Eexc = 550 cm⁻¹ in the S1 state, S1⇝S0internal conversion dominates the nonradiative decay with kIC ≥ 2 ⋅ 10¹⁰ s⁻¹, (2) the calculated S1⇝T1 (¹ππ*⇝³ππ*) ISC rate is in good agreement with experiment, (3) being El-Sayed forbidden, the S1⇝T1 ISC is moderately fast (kISC = 3 ⋅ 10⁹ s⁻¹), and not ultrafast, as claimed by other calculations, and (4) at Eexc ~ 550 cm⁻¹ the IC rate increases by ~50 times, probably by accessing the lowest conical intersection (the C5-twist CI) and thereby effectively switching off the ISC decay channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After decades of research on molecular excitons, only few molecular dimers are available on which exciton and vibronic coupling theories can be rigorously tested. In centrosymmetric H-bonded dimers consisting of identical (hetero)aromatic chromophores, the monomer electronic transition dipole moment vectors subtract or add, yielding S0 → S1 and S0 → S2 transitions that are symmetry-forbidden or -allowed, respectively. Symmetry breaking by 12C/13C or H/D isotopic substitution renders the forbidden transition weakly allowed. The excitonic coupling (Davydov splitting) can then be measured between the S0 → S1 and S0 → S2 vibrationless bands. We discuss the mass-specific excitonic spectra of five H-bonded dimers that are supersonically cooled to a few K and investigated using two-color resonant two-photon ionization spectroscopy. The excitonic splittings Δcalc predicted by ab initio methods are 5–25 times larger than the experimental excitonic splittings Δexp. The purely electronic ab initio splittings need to be reduced (“quenched”), reflecting the coupling of the electronic transition to the optically active vibrations of the monomers. The so-called quenching factors Γ < 1 can be determined from experiment (Γexp) and/or calculation (Γcalc). The vibronically quenched splittings Γ·Δcalc are found to nicely reproduce the experimental exciton splittings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramics are known to be chemically stable, and the possibility to electrically dope polymer-derived ceramics makes it a material of interest for implantable electrode applications. We investigated cytotoxic characteristics of four polymer-derived ceramic candidates with either electrically conductive or insulating properties. Cytotoxicity was assessed by culturing C2C12 myoblast cells under two conditions: by exposing them to material extracts and by putting them directly in contact with material samples. Cell spreading was optically evaluated by comparing microscope observations immediately after the materials insertion and after 24 h culturing. Cell viability (MTT) and mortality (LDH) were quantified after 24-h incubation in contact with the materials. Comparison was made with biocompatible positive references (alumina, platinum, biocompatible stainless steel 1.4435), negative references (latex, stainless steel 1.4301) and controls (no material present in the culture wells). We found that the cytotoxic properties of tested ceramics are comparable to established reference materials. These ceramics, which are reported to be very stable, can be microstructured and electrically doped to a wide range of conductivity and are thus excellent candidates for implantable electrode applications including pacemakers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an overview on different environmental zones within coastal areas and summarise the physical basis behind the three most important methods that are available to date Holocene coastal sediments. Besides radiocarbon and uranium series dating, Optically Stimulated Luminescence (Osl) has increasingly been applied for dating in coastal settings over the past decade. This is illustrated by a number of case studies showing that Osl can be applied to sediments from almost any kind of coastal environment, covering a potential dating range from some years up to several hundred thousand years. Osl dating may hence be the method of choice for deciphering natural environmental change along coasts as well as the presence and the impact of human occupation in such areas. In addition, we briefly show how and where these dating methods could be applied to constrain the palaeo-environmental context of an archaeological site at Vohemar in north-eastern Madagascar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive lymph nodes (LNs) are sites where pMHC-loaded dendritic cells (DCs) interact with rare cognate T cells, leading to their clonal expansion. While DC interactions with T cell subsets critically shape the ensuing immune response, surprisingly little is known on their spatial orchestration at physiologically T cell low precursor frequencies. Light sheet fluorescence microscopy and one of its implementations, selective plane illumination microscopy (SPIM), is a powerful method to obtain precise spatial information of entire organs of 0.5-10mm diameter, the size range of murine LNs. Yet, its usefulness for immunological research has thus far not been comprehensively explored. Here, we have tested and defined protocols that preserve fluorescent protein function during lymphoid tissue clearing required for SPIM. Reconstructions of SPIM-generated 3D data sets revealed that calibrated numbers of adoptively transferred T cells and DCs are successfully detected at a single cell level within optically cleared murine LNs. Finally, we define parameters to quantify specific interactions between antigen-specific T cells and pMHC-bearing DCs in murine LNs. In sum, our studies describe the successful application of light sheet fluorescence microscopy to immunologically relevant tissues.