65 resultados para Olympia Fields
Resumo:
Brian electric activity is viewed as sequences of momentary maps of potential distribution. Frequency-domain source modeling, estimation of the complexity of the trajectory of the mapped brain field distributions in state space, and microstate parsing were used as analysis tools. Input-presentation as well as task-free (spontaneous thought) data collection paradigms were employed. We found: Alpha EEG field strength is more affected by visualizing mentation than by abstract mentation, both input-driven as well as self-generated. There are different neuronal populations and brain locations of the electric generators for different temporal frequencies of the brain field. Different alpha frequencies execute different brain functions as revealed by canonical correlations with mentation profiles. Different modes of mentation engage the same temporal frequencies at different brain locations. The basic structure of alpha electric fields implies inhomogeneity over time — alpha consists of concatenated global microstates in the sub-second range, characterized by quasi-stable field topographies, and rapid transitions between the microstates. In general, brain activity is strongly discontinuous, indicating that parsing into field landscape-defined microstates is appropriate. Different modes of spontaneous and induced mentation are associated with different brain electric microstates; these are proposed as candidates for psychophysiological ``atoms of thought''.
Resumo:
We investigated the association between exposure to radio-frequency electromagnetic fields (RF-EMFs) from broadcast transmitters and childhood cancer. First, we conducted a time-to-event analysis including children under age 16 years living in Switzerland on December 5, 2000. Follow-up lasted until December 31, 2008. Second, all children living in Switzerland for some time between 1985 and 2008 were included in an incidence density cohort. RF-EMF exposure from broadcast transmitters was modeled. Based on 997 cancer cases, adjusted hazard ratios in the time-to-event analysis for the highest exposure category (>0.2 V/m) as compared with the reference category (<0.05 V/m) were 1.03 (95% confidence interval (CI): 0.74, 1.43) for all cancers, 0.55 (95% CI: 0.26, 1.19) for childhood leukemia, and 1.68 (95% CI: 0.98, 2.91) for childhood central nervous system (CNS) tumors. Results of the incidence density analysis, based on 4,246 cancer cases, were similar for all types of cancer and leukemia but did not indicate a CNS tumor risk (incidence rate ratio = 1.03, 95% CI: 0.73, 1.46). This large census-based cohort study did not suggest an association between predicted RF-EMF exposure from broadcasting and childhood leukemia. Results for CNS tumors were less consistent, but the most comprehensive analysis did not suggest an association.
Resumo:
This is a contribution to an expert opinion to be submitted to Intergovernmental Committee of the UNESCO Convention on Cultural Diversity. It seeks to identify recommendations for action in the fields of education, participation of the civil society and sustainable development (under respectively Articles 10, 11 and 13 of the Convention), which are to be specifically targeted taking into account the changed and changing conditions of the digital networked environment.
Resumo:
Purpose: In homeopathy or anthroposophically extended medicine high dilutions are used. They showed significant differences in ultraviolet light (UV) transmission between controls and different dilution levels. Exposing such dilutions to physical factors such as UV light or elevated temperature (37�C) yielded significantly different UV transmissions values compared to unexposed dilutions. The aim was to test whether electromagnetic fields (EMF) of a mobile phone affect the UV absorbance of dilutions of Atropa belladonna (Ab) and quartz. Methods: Commercially available dilutions of Ab 4x, 6x, 12x, 15x, 30x and of quartz 6x, 12x, 15x, 30x were investigated. On 5 days, 4 samples of each dilution were exposed to the EMF by a mobile phone at 900MHz (GSM) with an output power of 2W for 3 h. Control samples were kept in a separate room. UV-absorbance of the samples in the range from 190 to 340 nm was measured in randomized order. The average absorbance from 200 to 340 nm and from 200 to 240 nm was compared between exposed and unexposed samples by a dependent t-test. Results: Between unexposed and exposed dilutions of Ab and quartz no significant differences were detected, except for quartz 12x over the range from 200 to 340 nm. Conclusion: Exposure of high dilutions of Ab and quartz to GSM EMF of a mobile phone did not alter UV absorbance of these dilutions.
Resumo:
Amyotrophic lateral sclerosis (ALS) has been associated with exposures in so-called 'electrical occupations'. It is unclear if this possible link may be explained by exposure to extremely low-frequency magnetic fields (ELF-MF) or by electrical shocks. We evaluated ALS mortality in 2000-2008 and exposure to ELF-MF and electrical shocks in the Swiss National Cohort, using job exposure matrices for occupations at censuses 1990 and 2000. We compared 2.2 million workers with high or medium vs. low exposure to ELF-MF and electrical shocks using Cox proportional hazard models. Results showed that mortality from ALS was higher in people who had medium or high ELF-MF exposure in both censuses (HR 1.55 (95% CI 1.11-2.15)), but closer to unity for electrical shocks (HR 1.17 (95% CI 0.83-1.65)). When both exposures were included in the same model, the HR for ELF-MF changed little (HR 1.56), but the HR for electric shocks was attenuated to 0.97. In conclusion, there was an association between exposure to ELF-MF and mortality from ALS among workers with a higher likelihood of long-term exposure.
Resumo:
The international orthopaedic community aims to achieve the best possible outcome for patient care by constantly modifying surgical techniques and expanding the surgeon's knowledge. These efforts require proper reflection within a setting that necessitates a higher quality standard for global orthopaedic publication. Furthermore, these techniques demand that surgeons acquire information at a rapid rate while enforcing higher standards in research performance. An international consensus exists on how to perform research and what rules should be considered when publishing a scientific paper. Despite this global agreement, in today's "Cross Check Era", too many authors do not give attention to the current standards of systematic research. Thus, the purpose of this paper is to describe these performance standards, the available choices for orthopaedic surgeons and the current learning curve for seasoned teams of researchers and orthopaedic surgeons with more than three decades of experience. These lead to provide an accessible overview of all important aspects of the topics that will significantly influence the research development as we arrive at an important globalisation era in orthopaedics and trauma-related research.
Resumo:
We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.
Resumo:
PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0 = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Several techniques have been proposed to exploit GNSS-derived kinematic orbit information for the determination of long-wavelength gravity field features. These methods include the (i) celestial mechanics approach, (ii) short-arc approach, (iii) point-wise acceleration approach, (iv) averaged acceleration approach, and (v) energy balance approach. Although there is a general consensus that—except for energy balance—these methods theoretically provide equivalent results, real data gravity field solutions from kinematic orbit analysis have never been evaluated against each other within a consistent data processing environment. This contribution strives to close this gap. Target consistency criteria for our study are the input data sets, period of investigation, spherical harmonic resolution, a priori gravity field information, etc. We compare GOCE gravity field estimates based on the aforementioned approaches as computed at the Graz University of Technology, the University of Bern, the University of Stuttgart/Austrian Academy of Sciences, and by RHEA Systems for the European Space Agency. The involved research groups complied with most of the consistency criterions. Deviations only occur where technical unfeasibility exists. Performance measures include formal errors, differences with respect to a state-of-the-art GRACE gravity field, (cumulative) geoid height differences, and SLR residuals from precise orbit determination of geodetic satellites. We found that for the approaches (i) to (iv), the cumulative geoid height differences at spherical harmonic degree 100 differ by only ≈10 % ; in the absence of the polar data gap, SLR residuals agree by ≈96 % . From our investigations, we conclude that real data analysis results are in agreement with the theoretical considerations concerning the (relative) performance of the different approaches.
Resumo:
We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.