79 resultados para Nuclear and High Energy Physics
Resumo:
Mass and angular distributions of dijets produced in LHC proton-proton collisions at a centre-of-mass energy root s = 7TeV have been studied with the ATLAS detector using the full 2011 data set with an integrated luminosity of 4.8 fb(-1). Dijet masses up to similar to 4.0TeV have been probed. No resonance-like features have been observed in the dijet mass spectrum, and all angular distributions are consistent with the predictions of QCD. Exclusion limits on six hypotheses of new phenomena have been set at 95% CL in terms of mass or energy scale, as appropriate. These hypotheses include excited quarks below 2.83 TeV, colour octet scalars below 1.86TeV, heavy W bosons below 1.68 TeV, string resonances below 3.61 TeV, quantum black holes with six extra space-time dimensions for quantum gravity scales below 4.11 TeV, and quark contact interactions below a compositeness scale of 7.6 TeV in a destructive interference scenario.
Resumo:
A search is presented for new particles decaying to large numbers (7 to greater or equal to 10) of jets, missing transverse momentum and no isolated electrons or muons. This analysis uses 20.3/fb of pp collision data at sqrt(s)=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The sensitivity of the search is enhanced by considering the number of b-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of various simplified supersymmetry-inspired models where gluinos are pair produced, as well as a mSUGRA/CMSSM model.
Resumo:
The results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported. This search uses 20.1 fb(-1) of pp collisions at root s = 8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The lightest bottom and top squarks ((b) over tilde (1) and (t) over tilde (1) respectively) are searched for in a final state with large missing transverse momentum and two jets identified as originating from b-quarks. No excess of events above the expected level of Standard Model background is found. The results are used to set upper limits on the visible cross section for processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of the third-generation squarks are derived in phenomenological supersymmetric R-parity-conserving models in which either the bottom or the top squark is the lightest squark. The (b) over tilde (1) is assumed to decay via (b) over tilde (1) -> b (chi) over tilde (0)(1) and the (t) over tilde (1) via (t) over tilde (1) b (chi) over tilde (+/-)(1), with undetectable products of the subsequent decay of the (chi) over tilde (+/-)(1) due to the small mass splitting between the (chi) over tilde (+/-)(1) and the (chi) over tilde (0)(1)
Resumo:
Thermal screening masses related to the conserved vector current are determined for the case that the current carries a non-zero Matsubara frequency, both in a weak-coupling approach and through lattice QCD. We point out that such screening masses are sensitive to the same infrared physics as light-cone real-time rates. In particular, on the perturbative side, the inhomogeneous Schrödinger equation determining screening correlators is shown to have the same general form as the equation implementing LPM resummation for the soft-dilepton and photon production rates from a hot QCD plasma. The static potential appearing in the equation is identical to that whose soft part has been determined up to NLO and on the lattice in the context of jet quenching. Numerical results based on this potential suggest that screening masses overshoot the free results (multiples of 2πT) more strongly than at zero Matsubara frequency. Four-dimensional lattice simulations in two-flavour QCD at temperatures of 250 and 340 MeV confirm the non-static screening masses at the 10% level. Overall our results lend support to studies of jet quenching based on the same potential at T ≳ 250 MeV.
Resumo:
Strict next-to-leading order (NLO) results for the dilepton production rate from a QCD plasma at temperatures above a few hundred MeV suffer from a breakdown of the loop expansion in the regime of soft invariant masses M 2 ≪ (πT)2. In this regime an LPM resummation is needed for obtaining the correct leading-order result. We show how to construct an interpolation between the hard NLO and the leading-order LPM expression, which is theoretically consistent in both regimes and free from double counting. The final numerical results are presented in a tabulated form, suitable for insertion into hydrodynamical codes.
Resumo:
We consider a class of models with gauged U(1) R symmetry in 4D N=1 super-gravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1) R symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1) R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1) R charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1) R charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b K , b CK ).
Resumo:
A search is presented for the production of new heavy quarks that decay to a Z boson and a third-generation Standard Model quark. In the case of a new charge +2/3 quark (T), the decay targeted is T → Zt, while the decay targeted for a new charge −1/3 quark (B) is B → Zb. The search is performed with a dataset corresponding to 20.3 fb−1 of pp collisions at √ s = 8TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum Z boson candidate reconstructed from a pair of oppositely charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the absence or presence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a b-hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production mediated by the strong interaction, or single production mediated by the electroweak interaction. No significant excess of events above the Standard Model expectation is observed, and lower limits are derived on the mass of vector-like T and B quarks under various branching ratio hypotheses, as well as upper limits on the agnitude of electroweak coupling parameters.
Resumo:
This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 fb−1 of proton-proton collision data at TeX = 8 TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A W ′ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons (W *) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale M * of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying W.
Resumo:
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb−1 of LHC proton–proton collision data taken at centre-of-mass energies of √s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.
Resumo:
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of √s = 8TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4 (stat.) +3.2 −2.9 (syst.) ±1.2 (lumi) fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.
Resumo:
A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb−1 of proton-proton collision data at √s = 8TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale ʌ below 63TeV are excluded, independently of tan β. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090GeV are excluded.
Resumo:
A search for squarks and gluinos in final states containing high-pT jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √s = 8TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850GeV (440GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A0 = −2m0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Resumo:
A search for an excess of events with multiple high transverse momentum objects including charged leptons and jets is presented, using 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a centre-of-mass energy of √s = 8TeV. No excess of events beyond Standard Model expectations is observed. Using extra-dimensional models for black hole and string ball production and decay, exclusion contours are determined as a function of the mass threshold for production and the fundamental gravity scale for two, four and six extra dimensions. For six extra dimensions, mass thresholds of 4.8–6.2TeV are excluded at 95% confidence level, depending on the fundamental gravity scale and model assumptions. Upper limits on the fiducial cross-sections for non-Standard Model production of these final states are set.