127 resultados para Non-conventional models of career
Resumo:
This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate was 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.
Resumo:
A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.
Resumo:
An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.
Resumo:
BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.
Resumo:
Lessons learned from studies of experimental meningitis and brain abscess in animal models of infection represent major, highly significant contributions to our understanding of the pathogenesis and antimicrobial chemotherapy of these infections. For example, studies of experimental meningitis in rabbits demonstrated that the subarachnoid space is deficient in local host defenses, a finding that explains why only bactericidal antibiotic regimens are effective in treating this disease; studies of the efficacy of corticosteroids as adjunctive therapy for meningitis yielded data indicating that both beneficial and detrimental effects on the host are imparted by these compounds. These and a number of other key investigations of experimental meningitis and brain abscess, the results of these investigations, and the clinical significance of these results are presented in this article.
Resumo:
OBJECTIVE: Immediate and early loading of dental implants can simplify treatment and increase overall patient satisfaction. The purpose of this 3-year prospective randomized-controlled multicenter study was to assess the differences in survival rates and bone level changes between immediately and early-loaded implants with a new chemically modified surface (SLActive). This investigation shows interim results obtained after 5 months. MATERIAL AND METHODS: Patients > or =18 years of age missing at least one tooth in the posterior maxilla or mandible were enrolled in the study. Following implant placement, patients received a temporary restoration either on the day of surgery (immediate loading) or 28-34 days after surgery (early loading); restorations consisted of single crowns or two to four unit fixed dental prostheses. Permanent restorations were placed 20-23 weeks following surgery. The primary efficacy variable was change in bone level (assessed by standardized radiographs) from baseline to 5 months; secondary variables included implant survival and success rates. RESULTS: A total of 266 patients were enrolled (118 males and 148 females), and a total of 383 implants were placed (197 and 186 in the immediate and early loading groups, respectively). Mean patient age was 46.3+/-12.8 years. After 5 months, implant survival rates were 98% in the immediate group and 97% in the early group. Mean bone level change from baseline was 0.81+/-0.89 mm in the immediate group and 0.56+/-0.73 mm in the early group (P<0.05). Statistical analysis revealed a significant center effect (P<0.0001) and a significant treatment x center interaction (P=0.008). CONCLUSIONS: The results suggested that Straumann implants with an SLActive can be used predictably in time-critical (early or immediate) loading treatment protocols when appropriate patient selection criteria are observed. The mean bone level changes observed from baseline to 5 months (0.56 and 0.81 mm) corresponded to physiological observations from other studies, i.e., were not clinically significant. The presence of a significant center effect and treatment x center interaction indicated that the differences in bone level changes between the two groups were center dependent.
Resumo:
PRINCIPLES: Cardiogoniometry is a non-invasive technique for quantitative three-dimensional vectorial analysis of myocardial depolarization and repolarization. We describe a method of surface electrophysiological cardiac assessment using cardiogoniometry performed at rest to detect variables helpful in identifying coronary artery disease. METHODS: Cardiogoniometry was performed in 793 patients prior to diagnostic coronary angiography. Using 13 variables in men and 10 in women, values from 461 patients were retrospectively analyzed to obtain a diagnostic score that would identify patients having coronary artery disease. This score was then prospectively validated on 332 patients. RESULTS: Cardiogoniometry showed a prospective diagnostic sensitivity of 64%, and a specificity of 82%. ECG diagnostic sensitivity was significantly lower, with 53% and a similar specificity of 75%. CONCLUSIONS: Cardiogoniometry is a new, noninvasive, quantitative electrodiagnostic technique which is helpful in identifying patients with coronary artery disease. It can easily be performed at rest and delivers an accurate, automated diagnostic score.
Resumo:
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute diffuse damage to the pulmonary parenchyma by a variety of local or systemic insults. Increased alveolar capillary membrane permeability was recognized as the common end organ injury and a central feature in all forms of ALI/ARDS. Although great strides have been made in understanding the pathogenesis of ALI/ARDS and in intensive care medicine, the treatment approach to ARDS is still relying on ventilatory and cardiovascular support based on the recognition of the clinical picture. In the course of evaluating novel treatment approaches to ARDS, 3 models of ALI induced in different species, i.e. the surfactant washout lavage model, the oleic acid intravenous injection model and the endotoxin injection model, were widely used. This review gives an overview of the pathological characteristics of these models from studies in pigs, dogs or sheep. We believe that a good morphological description of these models, both spatially and temporally, will help us gain a better understanding of the real pathophysiological picture and apply these models more accurately and liberally in evaluating novel treatment approaches to ARDS.
Resumo:
BACKGROUND: Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES: To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS: This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION: There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.