78 resultados para Neutrino fluxes
Resumo:
In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of ∼1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be δtν≡TOFc−TOFν=(0.6±0.4 (stat.)±3.0 (syst.)) ns and δtν¯≡TOFc−TOFν¯=(1.7±1.4 (stat.)±3.1 (syst.)) ns for νμ and ν¯μ, respectively. This corresponds to a limit on the muon neutrino velocity with respect to the speed of light of −1.8×10−6<(vν−c)/c<2.3×10−6 at 90% C.L. This new measurement confirms with higher accuracy the revised OPERA result.
Resumo:
The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, vertical bar Delta m(32)(2)vertical bar approximate to 2.4 X 10(-3) eV(2). An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam's origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3 +/- 0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1 sigma), and a fit assuming nu(mu) -> nu(e) oscillations with sin (2)2 theta(23) = 1, delta(CP) = 0 and vertical bar Delta m(32)(2)vertical bar = 2.4 X 10(-3) eV(2) yields sin (2)2 theta(13) = 0.088(-0.039)(+0.049)(stat + syst).
Resumo:
There is a need for accurate predictions of ecosystem carbon (C) and water fluxes in field conditions. Previous research has shown that ecosystem properties can be predicted from community abundance-weighted means (CWM) of plant functional traits and measures of trait variability within a community (FDvar). The capacity for traits to predict carbon (C) and water fluxes, and the seasonal dependency of these trait-function relationships has not been fully explored. Here we measured daytime C and water fluxes over four seasons in grasslands of a range of successional ages in southern England. In a model selection procedure, we related these fluxes to environmental covariates and plant biomass measures before adding CWM and FDvar plant trait measures that were scaled up from measures of individual plants grown in greenhouse conditions. Models describing fluxes in periods of low biological activity contained few predictors, which were usually abiotic factors. In more biologically active periods, models contained more predictors, including plant trait measures. Field-based plant biomass measures were generally better predictors of fluxes than CWM and FDvar traits. However, when these measures were used in combination traits accounted for additional variation. Where traits were significant predictors their identity often reflected seasonal vegetation dynamics. These results suggest that database derived trait measures can improve the prediction of ecosystem C and water fluxes. Controlled studies and those involving more detailed flux measurements are required to validate and explore these findings, a worthwhile effort given the potential for using simple vegetation measures to help predict landscape-scale fluxes.
Resumo:
A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr(-1) since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (similar to 0.4 Pg C yr(-1)) or sequestered in sediments (similar to 0.5 Pg C yr(-1)) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of similar to 0.1 Pg C yr(-1) to the open ocean. According to our analysis, terrestrial ecosystems store similar to 0.9 Pg C yr(-1) at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr(-1) previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.
Resumo:
We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with N = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G2 holonomy at N = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ πT) and non-relativistic regimes (M ≫ πT), and up to LO in an ultrarelativistic regime (M ≲ gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M ~g 1/2 T in which our interpolation is phenomenological and a more precise study would be welcome.
Resumo:
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.
Resumo:
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Resumo:
The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ⟩ϕ=1.11±0.10(stat)±0.18(syst)×10−38 cm2/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10−38 cm2/nucleon and the GENIE prediction is 1.08×10−38 cm2/nucleon. The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.
Resumo:
The OPERA experiment is searching for νμ → ντ oscillations in appearance mode, i.e., via the direct detection of τ leptons in ντ charged-current interactions. The evidence of νμ → ντ appearance has been previously reported with three ντ candidate events using a sub-sample of data from the 2008–2012 runs. We report here a fourth ντ candidate event, with the τ decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analyzed events and the low background, νμ → ντ oscillations are established with a significance of 4.2σ.
Resumo:
Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.
Resumo:
We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section. It is obtained by observing nuclear deexcitation γ rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to 3.01 × 1020 protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the 4–30 MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from natural radioactivity. The flux-averaged NCQE cross section we measure is 1.55 × 10−38 cm2 with a 68% confidence interval of ð1.22; 2.20Þ × 10−38 cm2 at a median neutrino energy of 630 MeV, compared with the theoretical prediction of 2.01 × 10−38 cm2.