138 resultados para Neuropathy target esterase
Resumo:
AIMS: To evaluate the plaque composition obtained by virtual histology (VH) IVUS according to the clinical presentation and to compare those data to previously published histopathology data. METHODS AND RESULTS: VH was performed on 95 de novo significant lesions (>75% stenosis) in 85 patients [28 acute coronary syndrome (ACS) patients, 30 lesions; 57 stable angina pectoris (SAP) patients, 65 lesions]. There were a higher prevalence of positive remodelling (47 vs. 22%, P=0.013), thrombus (20 vs. 1.5%, P=0.0037), and echo-lucent area (23.3 vs. 7.7%, P=0.047) in ACS patients. At the minimal lumen site, fibrous plaque area was significantly larger in ACS lesions than in SAP lesions (66.0+/-10.7 vs. 61.4+/-8.9%, P=0.034), whereas necrotic core and dense calcium plaque area were smaller in ACS lesions (Necrotic core: 6.8+/-6.0 vs. 11.0+/-8.3%, P=0.02; Dense calcium: 2.6+/-3.0 vs. 4.9+/-5.8%, P=0.03). No differences in rate of thin cap fibroatheroma, thick fibrotheroma, or for the presence of multiple necrotic core layers were observed between both groups. CONCLUSION: Plaque composition obtained by VH-IVUS shows less necrotic core and more fibrous tissue in ACS compared to SAP lesions, which is in contradiction with previously published histopathologic data.
Resumo:
Collagen is a major component of extracellular matrix and a wide variety of types exist. Cells recognise collagen in different ways depending on sequence and structure. They can recognise predominantly primary sequence, they may require triple-helical structure or they can require fibrillar structures. Since collagens are major constituents of the subendothelium that determine the thrombogenicity of the injured or pathological vessel wall, a major role is induction of platelet activation and aggregation as the start of repair processes. Platelets have at least two direct and one indirect (via von Willebrand factor) receptors for collagen, and collagen has specific recognition motifs for these receptors. These receptors and recognition motifs are under intensive investigation in the search for possible methods to control platelet activation in vivo. A wide range of proteins has been identified and, in part, characterised from both haematophageous insects and invertebrates but also from snake venoms that inhibit platelet activation by collagen or induce platelet activation via collagen receptors on platelets. These will provide model systems to test the effect of inhibition of specific collagen-platelet receptor interactions for both effectiveness as well as for side effects and should provide assay systems for the development of small molecule inhibitors. Since platelet inhibitors for long-term prophylaxis of cardiovascular diseases are still in clinical trials there are many unanswered questions about long-term effects both positive and negative. The major problem which still has to be definitively solved about these alternative approaches to inhibition of platelet activation is whether they will show advantages in terms of dose-response curves while offering decreased risks of bleeding problems. Preliminary studies would seem to suggest that this is indeed the case.
Resumo:
Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.
Resumo:
To maintain a tumour vasculature in proportion of the tumour growth, the endothelial cells proliferate and up-regulate the expression of the VEGF receptor 2 (VEGFR-2), whose expression is restricted to this cell type. This specificity implies that one therapeutically target the tumour endothelium. We investigated the use of immunoliposomes (IL), containing conjugated Fab' fragments of the monoclonal rat anti-VEGFR-2 antibody DC101 (DC101-IL) to cargo doxorubicin to the tumour endothelium. In vitro, fluorescein-labelled IL displayed a 7 fold better binding to VEGFR-2-positive 293T cells in comparison to unspecific liposomes. Balb/C mice were injected subcutaneously with syngeneic hepatocellular carcinoma cells. One set of animals was treated with DC101-IL filled with doxorubicin when the tumours were bigger than 400 mm3. A specific delivery of doxorubicin to endothelial cells of the tumour vessels could be demonstrated by the red fluorescence of doxorubicin with laser scanning microscopy, but neither a delay of tumour growth nor a shrinking of the tumour mass was observed. Yet necrosis in the tumours treated with doxorubicin containing vehicles was larger than in the tumours of the control groups. A second set of animals was treated with DC101-IL filled with doxorubicin when the tumours were smaller than 1 mm3. DC101-IL filled with doxorubicin led to a significant delay in tumour growth up to 7 weeks compared to empty DC101-IL, free doxorubicin, and HEPES/Glucose (HEPES/Glucose vs. DOX-DC101-IL, p = 0.001; unpaired, two-tailed Student's t-test) and to a higher amount of necrotic areas in the tumours (p = 0.053; 1 way ANOVA with 4 groups). These findings suggest that IL designed to bind specifically to VEGFR-2 can be used to deliver doxorubicin to the tumour endothelium and may impair the "angiogenic switch" of the tumours.
Resumo:
Specific inhibition of platelet function is a major target of anti-thrombotic drug research. Platelet receptors are both accessible and specific but have multiple functions often linked to a wide range of ligands. GPIb complex is best known as a major platelet receptor for von Willebrand factor essential for platelet adhesion under high shear conditions found in arteries and in thrombosis. Recent animal studies have supported inhibition of GPIb as a good candidate for anti-thrombotic drug development with several classes of proteins showing important specific effects and the required discrimination between roles in haemostasis and thrombosis is important to protect against bleeding complications. These include antibodies, several classes of snake venom proteins, mutant thrombin molecules and peptides affecting subunit interactions. However, due to the nature of its receptor-ligand interactions involving large protein-protein interfaces, the possibility of developing classic pharmaceutical inhibitors for long term (and perhaps oral) treatment is still unclear, and additional information about structural interactions and signalling mechanisms is essential.
Resumo:
We have previously shown that antioxidants such as a-phenyl-tert-butyl nitrone or N-acetylcysteine attenuate cortical neuronal injury in infant rats with bacterial meningitis, suggesting that oxidative alterations play an important role in this disease. However, the precise mechanism(s) by which antioxidants inhibit this injury remain(s) unclear. We therefore studied the extent and location of protein oxidation in the brain using various biochemical and immunochemical methods. In cortical parenchyma, a trend for increased protein carbonyls was not evident until 21 hours after infection and the activity of glutamine synthetase (another index of protein oxidation) remained unchanged. Consistent with these results, there was no evidence for oxidative alterations in the cortex by various immunohistochemical methods even in cortical lesions. In contrast, there was a marked increase in carbonyls, 4-hydroxynonenal protein adducts and manganese superoxide dismutase in the cerebral vasculature. Elevated lipid peroxidation was also observed in cerebrospinal fluid and occasionally in the hippocampus. All of these oxidative alterations were inhibited by treatment of infected animals with N-acetylcysteine or alpha-phenyl-tert-butyl nitrone. Because N-acetylcysteine does not readily cross the blood-brain barrier and has no effect on the loss of endogenous brain antioxidants, its neuroprotective effect is likely based on extraparenchymal action such as inhibition of vascular oxidative alterations.
Resumo:
In the diagnosis of diabetic autonomic neuropathy (DAN) various autonomic tests are used. We took a novel statistical approach to find a combination of autonomic tests that best separates normal controls from patients with DAN.
Resumo:
Diabetic neuropathy (DN) is an important complication contributing to high morbidity and morbidity of diabetic subjects. Primarily, interventional strategies aim at normalization hyperglycemia (to prevent development and progression of DN), at early diagnosis and at prevention of ulcers and amputations. In addition, an increasing number of pharmaceutical agents is used to symptomatically treat dysesthesia and pain associated with DN. During recent years attempts have been made to pharmacologically treat DN by acting on underlying patho-physiological mechanisms (e.g. sorbitol pathway, non-enzymatic glycation, microvascular abnormalities). So far, these strategies have not changed clinical praxis. This review will give a systematic overview of DN and summarize current pharmacological options to symptomatically treat dysesthesia and pain associated with DN.
Resumo:
BACKGROUND ; AIMS: Selective cyclooxygenase-2 inhibitors were developed to reduce the gastrointestinal risk associated with nonsteroidal anti-inflammatory drugs (NSAIDs). The Therapeutic Arthritis Research and Gastrointestinal Event Trial was the largest study to evaluate primarily the gastrointestinal safety outcomes of selective cyclooxygenase-2 inhibitors. Data from the Therapeutic Arthritis Research and Gastrointestinal Event Trial were used to identify risk factors and investigate the safety of lumiracoxib in subgroups. METHODS: Patients with osteoarthritis (age, >or=50 y) were randomized to receive lumiracoxib 400 mg once daily, naproxen 500 mg twice daily, or ibuprofen 800 mg 3 times daily for 12 months. Events were categorized by a blinded adjudication committee. The primary end point was all definite or probable ulcer complications. RESULTS: For patients taking NSAIDs, factors associated with an increased risk of ulcer complications were age 65 years or older (hazard ratio [HR], 2.30; 95% confidence interval [CI], 1.48-3.59), previous history of gastrointestinal bleed or ulcer (HR, 3.61; 95% CI, 1.86-7.00), non-Caucasian racial origin (HR, 2.10; 95% CI, 1.35-3.27), and male sex (HR, 1.70; 95% CI, 1.08-2.68). With lumiracoxib, significant risk factors were age 65 years or older (HR, 3.18; 95% CI, 1.40-7.20), male sex (HR, 2.60; 95% CI, 1.25-5.40), non-Caucasian racial origin (HR, 2.16; 95% CI, 1.02-4.59), and concomitant aspirin use (HR, 2.89; 95% CI, 1.40-5.97). Increased risks in patients age 65 years and older were increased further if other risk factors were present. Lumiracoxib maintained an advantage over NSAIDs across all subgroups except aspirin use. CONCLUSIONS: Lumiracoxib was associated with a reduced risk of ulcer complications compared with NSAIDs in all significant subgroups except aspirin users.
Resumo:
BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.