115 resultados para Naturalized breeds.
Resumo:
Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.
Resumo:
OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.
Resumo:
Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.
Resumo:
BACKGROUND: Non-synonymous polymorphisms within the prion protein gene (PRNP) influence the susceptibility and incubation time for transmissible spongiform encephalopathies (TSE) in some species such as sheep and humans. In cattle, none of the known polymorphisms within the PRNP coding region has a major influence on susceptibility to bovine spongiform encephalopathy (BSE). Recently, however, we demonstrated an association between susceptibility to BSE and a 23 bp insertion/deletion (indel) polymorphism and a 12 bp indel polymorphism within the putative PRNP promoter region using 43 German BSE cases and 48 German control cattle. The objective of this study was to extend this work by including a larger number of BSE cases and control cattle of German and Swiss origin. RESULTS: Allele, genotype and haplotype frequencies of the two indel polymorphisms were determined in 449 BSE cattle and 431 unaffected cattle from Switzerland and Germany including all 43 German BSE and 16 German control animals from the original study. When breeds with similar allele and genotype distributions were compared, the 23 bp indel polymorphism again showed a significant association with susceptibility to BSE. However, some additional breed-specific allele and genotype distributions were identified, mainly related to the Brown breeds. CONCLUSION: Our study corroborated earlier findings that polymorphisms in the PRNP promoter region have an influence on susceptibility to BSE. However, breed-specific differences exist that need to be accounted for when analyzing such data.
Resumo:
Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.
Resumo:
BACKGROUND: Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. RESULTS: We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. CONCLUSION: We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.
Resumo:
Alopecia X is a noninflammatory, progressive, bilateral symmetric alopecia in dogs. The disease is mainly found in Nordic breeds. The breed predisposition and a strong familial accumulation suggest a hereditary background. We analyzed the cathepsin L2 gene (CTSL2) as a candidate for alopecia X. The comparative sequencing of 14 affected and 18 control animals revealed ten polymorphisms; however, none of these polymorphisms affected the coding sequence. Haplotype analysis did not reveal an association of one particular CTSL2 haplotype with the disease phenotype; therefore, we conclude that the CTSL2 gene is probably not the causative gene for alopecia X.
Resumo:
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases that can occur spontaneously or can be caused by infection or mutations within the prion protein gene PRNP. Nonsynonymous DNA polymorphisms within the PRNP gene have been shown to influence susceptibility/resistance to infection in sheep and humans. Analysis of DNA polymorphisms within the core promoter region of the PRNP gene in four major German bovine breeds resulted in the identification of both SNPs and insertion/deletion (indel) polymorphisms. Comparative genotyping of both controls and animals that tested positive for bovine spongiform encephalopathy (BSE) revealed a significantly different distribution of two indel polymorphisms and two SNPs within Braunvieh animals, suggesting an association of these polymorphisms with BSE susceptibility. The functional relevance of these polymorphisms was analyzed using reporter gene constructs in neuronal cells. A specific haplotype near exon 1 was identified that exhibited a significantly lower expression level. Genotyping of nine polymorphisms within the promoter region and haplotype calculation revealed that the haplotype associated with the lowest expression level was underrepresented in the BSE group of all breeds compared to control animals, indicating a correlation of reduced PRNP expression and increased resistance to BSE.
Resumo:
The DNAL4 (dynein, axonemal, light polypeptide 4) gene encodes a light chain of dynein. Dyneins are motor proteins that contribute to axonal transport. Cloning and characterization of the porcine DNAL4 revealed a conserved organization with respect to the human ortholog. The porcine DNAL4 gene consists of 4 exons and codes for a peptide of 105 amino acids. The porcine DNAL4 gene is located on SSC5p15. Analysis of the naturally occurring variation of the DNAL4 gene in pigs from the Piétrain und Duroc breeds revealed five SNPs in non-coding regions of the gene.
Resumo:
For young active dogs of large, fast-growing breeds, diseases of the elbow represent an increasing important disorder. Genetic predisposition, overweight and joint overload have been proposed as possible causes of elbow dysplasia. In this study, the influence of various biomechanical parameters on load transfer in healthy and pathological dog elbows has been analysed by means of a two-dimensional finite element model. Pathological changes in the elbow structure, such as altered material properties or asynchronous bone growth, have a distinct influence on the contact pressure in the joint articulation, internal bone deformation and stresses in the bones. The results obtained support empirical observations made during years of experience and offer explanations for clinical findings that are not yet well understood.
Resumo:
The melanocortin-4 receptor (MC4R) is expressed in the hypothalamus and regulates energy intake and body weight. In silico screening of the canine chromosome 1 sequence and a comparison with the porcine MC4R sequence by BLAST were performed. The nucleotide sequence of the whole coding region and 3'- and 5'-flanking regions of the dog (1214 bp) and red fox (1177 bp) MC4R gene was established and high conservation of the nucleotide sequences was revealed (99%). Five sets of PCR primers were designed and a search for polymorphism was performed by the SSCP technique in a group of 31 dogs representing nineteen breeds and 35 farm red foxes. Sequencing of DNA fragments, representing the identified SSCP patterns, revealed three single nucleotide polymorphisms (including a missense one) in dogs and four silent SNPs in red foxes. An average SNP frequency was approx. 1/400 bp in the dog and 1/300 bp in the red fox. We mapped the MC4R gene by FISH to the canine chromosome 1 (CFA1q1.1) and to the red fox chromosome 5 (VVU5p1.2).
Resumo:
This study aimed at isolating Trypanosoma brucei gambiense from human African trypanosomiasis (HAT) patients from south Sudan. Fifty HAT patients identified during active screening surveys were recruited, most of whom (49/50) were in second-stage disease. Blood and cerebrospinal fluid samples collected from the patients were cryopreserved using Triladyl as the cryomedium. The samples were stored at -150 degrees C in liquid nitrogen vapour in a dry shipper. Eighteen patient stabilates could be propagated in immunosuppressed Mastomys natalensis and/or SCID mice. Parasitaemia was highest in SCID mice. Further subpassages in M. natalensis increased the virulence of the trypanosomes and all 18 isolates recovered from M. natalensis or SCID mice became infective to other immunosuppressed mouse breeds. A comparison of immunosuppressed M. natalensis and Swiss White, C57/BL and BALB/c mice demonstrated that all rodent breeds were susceptible after the second subpassage and developed a parasitaemia >10(6)/ml by Day 5 post infection. The highest parasitaemias were achieved in C57/BL and BALB/c mice. These results indicate that propagation of T. b. gambiense isolates after initial isolation in immunosuppressed M. natalensis or SCID mice can be done in a range of immunosuppressed rodents.
Resumo:
Many plant species have been introduced from their native ranges to new continents, but few have become naturalized or, ultimately, invasive. It has been predicted that species that do not require the presence of compatible mates and the services of pollinators for reproduction will be favored in establishment after long-distance dispersal. We tested whether this hypothesis, generally referred to as Baker's law, holds for South African species of Iridaceae ( iris family) that have been introduced in other regions for horticultural purposes. Fruit and seed production of flowers from which pollinators had been experimentally excluded was assessed for 10 pairs of species from nine different genera or subgenera. Each species pair comprised one naturalized and one nonnaturalized species, all of which are used in international horticulture. On average, species of Iridaceae that have become naturalized outside their native ranges showed a higher capacity for autonomous fruit and seed production than congeneric species that have not become naturalized. This was especially true for the naturalized species that are considered to be invasive weeds. These results provide strong evidence for the role of autonomous seed production in increasing potential invasiveness in plants.
Resumo:
We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
Resumo:
Recently, a muscular disorder defined as "congenital pseudomyotonia" was described in Chianina cattle, one of the most important Italian cattle breeds for quality meat and leather. The clinical phenotype of this disease is characterized by an exercise-induced muscle contracture that prevents animals from performing muscular activities. On the basis of clinical symptoms, Chianina pseudomyotonia appeared related to human Brody's disease, a rare inherited disorder of skeletal muscle function that results from a sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) deficiency caused by a defect in the ATP2A1 gene that encodes SERCA1. SERCA1 is involved in transporting calcium from the cytosol to the lumen of the sarcoplasmic reticulum. Recently, we identified the genetic defect underlying Chianina cattle pseudomyotonia. A missense mutation in exon 6 of the ATP2A1 gene, leading to an R164H substitution in the SERCA1 protein, was found. In this study, we provide biochemical evidence for a selective deficiency in SERCA1 protein levels in sarcoplasmic reticulum membranes from affected muscles, although mRNA levels are unaffected. The reduction of SERCA1 levels accounts for the reduced Ca(2+)-ATPase activity without any significant change in Ca(2+)-dependency. The loss of SERCA1 is not compensated for by the expression of the SERCA2 isoform. We believe that Chianina cattle pseudomyotonia might, therefore, be the true counterpart of human Brody's disease, and that bovine species might be used as a suitable animal model.