56 resultados para Multivariate measurement model
Resumo:
Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37 pb−1 of proton–proton collision data collected at a centre-of-mass energy of 7 TeV. Chargedparticle mean pT and densities of all-particle ET and chargedparticle multiplicity and pT have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 to 800 GeV. The correlation of chargedparticle mean pT with charged-particle multiplicity is also studied, and the ET densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beamremnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisonsto the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.
Resumo:
A measurement of event-plane correlations involving two or three event planes of different order is presented as a function of centrality for 7 μb −1 Pb+Pb collision data at √s NN =2.76 TeV, recorded by the ATLAS experiment at the Large Hadron Collider. Fourteen correlators are measured using a standard event-plane method and a scalar-product method, and the latter method is found to give a systematically larger correlation signal. Several different trends in the centrality dependence of these correlators are observed. These trends are not reproduced by predictions based on the Glauber model, which includes only the correlations from the collision geometry in the initial state. Calculations that include the final-state collective dynamics are able to describe qualitatively, and in some cases also quantitatively, the centrality dependence of the measured correlators. These observations suggest that both the fluctuations in the initial geometry and the nonlinear mixing between different harmonics in the final state are important for creating these correlations in momentum space.
Resumo:
Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of p s = 8TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5ơ level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the Sherpa and Powheg event generators.
Resumo:
Double-differential dijet cross-sections measured in pp collisions at the LHC with a 7TeV centre-of-mass energy are presented as functions of dijet mass and half the rapidity separation of the two highest-pT jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5 fb−1, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross-sections are presented at the particle level. Cross-sections are measured up to 5TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross-sections are compared with next-to-leading-order perturbative QCD calculations by NLOJet++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a partonshower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. In general, good agreement with data is observed for the NLOJet++ theoretical predictions when using the CT10, NNPDF2.1 and MSTW 2008 PDF sets. Disagreement is observed when using the ABM11 and HERAPDF1.5 PDF sets for some ranges of dijet mass and half the rapidity separation. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.
Resumo:
The OPERA detector, designed to search for νμ → ντ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected chargeseparated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio Rμ ≡ Nμ+/Nμ− was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowedminimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1–20 TeV investigated by OPERA, Rμ is well described by a parametric model including only pion and kaon contributions to themuon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to 200 TeV/nucleon primary energy.
Resumo:
ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings.
Resumo:
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3 eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3 eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
Resumo:
Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric Composition Change) ozone radiometer measuring at Bern.
Resumo:
The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
Resumo:
We report a measurement of the νµ charged current quasi-elastic cross-sections on carbon in the T2K on-axis neutrino beam. The measured charged current quasi-elastic cross-sections on carbon at mean neutrino energies of 1.94 GeV and 0.93 GeV are (11.95 ± 0.19(stat.) +1.82−1.47(syst.)) ×10^−39 cm^2/neutron, and (10.64 ± 0.37(stat.)+2.03−1.65(syst.)) × 10^−39 cm^2/neutron, respectively. These results agree well with the predictions of neutrino interaction models. In addition, we investigated the effects of the nuclear model and the multi-nucleon interaction.
Resumo:
PURPOSE To identify the prevalence and progression of macular atrophy (MA) in neovascular age-related macular degeneration (AMD) patients under long-term anti-vascular endothelial growth factor (VEGF) therapy and to determine risk factors. METHOD This retrospective study included patients with neovascular AMD and ≥30 anti-VEGF injections. Macular atrophy (MA) was measured using near infrared and spectral-domain optical coherence tomography (SD-OCT). Yearly growth rate was estimated using square-root transformation to adjust for baseline area and allow for linearization of growth rate. Multiple regression with Akaike information criterion (AIC) as model selection criterion was used to estimate the influence of various parameters on MA area. RESULTS Forty-nine eyes (47 patients, mean age 77 ± 14) were included with a mean of 48 ± 13 intravitreal anti-VEGF injections (ranibizumab:37 ± 11, aflibercept:11 ± 6, mean number of injections/year 8 ± 2.1) over a mean treatment period of 6.2 ± 1.3 years (range 4-8.5). Mean best-corrected visual acuity improved from 57 ± 17 letters at baseline (= treatment start) to 60 ± 16 letters at last follow-up. The MA prevalence within and outside the choroidal neovascularization (CNV) border at initial measurement was 45% and increased to 74%. Mean MA area increased from 1.8 ± 2.7 mm(2) within and 0.5 ± 0.98 mm(2) outside the CNV boundary to 2.7 ± 3.4 mm(2) and 1.7 ± 1.8 mm(2) , respectively. Multivariate regression determined posterior vitreous detachment (PVD) and presence/development of intraretinal cysts (IRCs) as significant factors for total MA size (R(2) = 0.16, p = 0.02). Macular atrophy (MA) area outside the CNV border was best explained by the presence of reticular pseudodrusen (RPD) and IRC (R(2) = 0.24, p = 0.02). CONCLUSION A majority of patients show MA after long-term anti-VEGF treatment. Reticular pseudodrusen (RPD), IRC and PVD but not number of injections or treatment duration seem to be associated with the MA size.