73 resultados para Models of Internationalization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the convective regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders1, 2. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin3, 4 and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure5 and neurocognitive impairment6. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of genetic, archeological and paleontological evidence suggest that anatomically modern humans (Homo sapiens) colonized the world in the last 60,000 years by a series of migrations originating from Africa (e.g. Liu et al., 2006; Handley et al., 2007; Prugnolle, Manica, and Balloux, 2005; Ramachandran et al. 2005; Li et al. 2008; Deshpande et al. 2009; Mellars, 2006a, b; Lahr and Foley, 1998; Gravel et al., 2011; Rasmussen et al., 2011). With the progress of ancient DNA analysis, it has been shown that archaic humans hybridized with modern humans outside Africa. Recent direct analyses of fossil nuclear DNA have revealed that 1–4 percent of the genome of Eurasian has been likely introgressed by Neanderthal genes (Green et al., 2010; Reich et al., 2010; Vernot and Akey, 2014; Sankararaman et al., 2014; Prufer et al., 2014; Wall et al., 2013), with Papua New Guineans and Australians showing even larger levels of admixture with Denisovans (Reich et al., 2010; Skoglund and Jakobsson, 2011; Reich et al., 2011; Rasmussen et al., 2011). It thus appears that the past history of our species has been more complex than previously anticipated (Alves et al., 2012), and that modern humans hybridized several times with local hominins during their expansion out of Africa, but the exact mode, time and location of these hybridizations remain to be clarifi ed (Ibid.; Wall et al., 2013). In this context, we review here a general model of admixture during range expansion, which lead to some predictions about expected patterns of introgression that are relevant to modern human evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of conspecific neighbours on survival and growth of trees have been found to be related to species abundance. Both positive and negative relationships may explain observed abundance patterns. Surprisingly, it is rarely tested whether such relationships could be biased or even spurious due to transforming neighbourhood variables or influences of spatial aggregation, distance decay of neighbour effects and standardization of effect sizes. To investigate potential biases, communities of 20 identical species were simulated with log-series abundances but without species-specific interactions. No relationship of conspecific neighbour effects on survival or growth with species abundance was expected. Survival and growth of individuals was simulated in random and aggregated spatial patterns using no, linear, or squared distance decay of neighbour effects. Regression coefficients of statistical neighbourhood models were unbiased and unrelated to species abundance. However, variation in the number of conspecific neighbours was positively or negatively related to species abundance depending on transformations of neighbourhood variables, spatial pattern and distance decay. Consequently, effect sizes and standardized regression coefficients, often used in model fitting across large numbers of species, were also positively or negatively related to species abundance depending on transformation of neighbourhood variables, spatial pattern and distance decay. Tests using randomized tree positions and identities provide the best benchmarks by which to critically evaluate relationships of effect sizes or standardized regression coefficients with tree species abundance. This will better guard against potential misinterpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulated expression of the MET receptor tyrosine kinase has been reported in up to 50% of patients with hepatocellular carcinoma, the most abundant form of liver cancers, and is associated with decreased survival. Consequently, MET is considered as a molecular target in this malignancy, whose progression is highly dependent on extensive angiogenesis. Here we studied the impact of MET small molecule inhibitors on angiogenesis-associated parameters and growth of xenograft liver models consisting of cells expressing MET-mutated variants M1268T and Y1248H, which exhibit constitutive kinase activity. We demonstrate that MET mutations expression is associated with significantly increased production of vascular endothelial growth factor, which is blocked by MET targeting only in cells expressing the M1268T inhibitor-sensitive but not in the Y1248H inhibitor-resistant variant. Decrease in vascular endothelial growth factor production is also associated with reduction of tyrosine phopshorylation of the vascular endothelial growth factor receptor 2 expressed on primary liver sinusoidal endothelial cells and with inhibition of vessel formation. Furthermore, MET inhibition demonstrated an efficient anti-tumor activity and considerable reduction in microvessel density only against the M1268T-derived intrahepatic tumors. Collectively, our data support the role of targeting MET-associated angiogenesis as a major biological determinant for liver tumor growth control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prognosis from thyroid cancer subtypes in humans covers a spectrum from "cured at almost 90%" to "100% lethal." Invasive and poorly differentiated forms of thyroid cancer are among the most aggressive human cancers, and there are few effective therapeutic options. Genetically engineered mice, based on mutations observed in patients, can accurately recapitulate the human disease and its progression, providing invaluable tools for the preclinical evaluation of novel therapeutic approaches. This overview details models developed to date as well as their uses for identifying novel anticancer agents. © 2015 by John Wiley & Sons, Inc.