80 resultados para Mice as laboratory animals
Resumo:
Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.
Resumo:
Conditioning with granulocyte colony-stimulating factor (G-CSF) promotes liver regeneration in an experimental small-for-size liver remnant mouse model. The mechanisms involved in this extraordinary G-CSF effect are unknown. The aim of this study was to investigate the influence of G-CSF on the hepatic microvasculature in the regenerating liver. The hepatic sinusoidal microvasculature and microarchitecture of the regenerating liver were evaluated by intravital microscopy in mice. Three experimental groups were compared: (1) unoperated unconditioned animals (control; n = 5), (2) animals conditioned with G-CSF 48 h after 60% partial hepatectomy (G-CSF-PH; n = 6), and (3) animals sham conditioned 48 h after 60% PH (sham-PH; n = 6). PH led to hepatocyte hypertrophy and increased hepatic sinusoidal velocity in the sham-PH and G-CSF-PH groups. Increased sinusoidal diameter and increased hepatic blood flow were observed in the G-CSF-PH group compared to the sham-PH and control groups. Furthermore, there was a strong positive correlation between spleen weight and hepatic sinusoidal diameter in the G-CSF-PH group. The increased hepatic blood flow could explain the observed benefit of G-CSF conditioning during liver regeneration. These results elucidate an unexplored aspect of pharmacological modulation of liver regeneration and motivate further experiments.
Resumo:
Concentrations of corticosterone in brain areas of TO strain mice were measured by radioimmunoassay. The studies examined the effects of routine laboratory maneuvers, variation during the circadian peak, adrenalectomy, social defeat and acute injections of alcohol on these concentrations. Brief handling of mice increased corticosterone levels in plasma but not in striatum and reduced those in the hippocampus. Single injections of isotonic saline raised the plasma concentrations to a similar extent as the handling, but markedly elevated concentrations in the three brain regions. Five minutes exposure to a novel environment increased hippocampal and cerebral cortical corticosterone levels and striatal concentrations showed a larger rise. However, by 30 min in the novel environment, plasma concentrations rose further while those in striatum and cerebral cortex fell to control levels and hippocampal corticosterone remained elevated. Over the period of the circadian peak the hippocampal and striatal concentrations paralleled the plasma concentrations but cerebral cortical concentrations showed only small changes. Adrenalectomy reduced plasma corticosterone concentrations to below detectable levels after 48 h but corticosterone levels were only partially reduced in the hippocampus and striatum and remained unchanged in the cerebral cortex. Single or repeated social defeat increased both brain and plasma concentrations after 1 h. Acute injections of alcohol raised the regional brain levels in parallel with plasma concentrations. The results show that measurements of plasma concentrations do not necessarily reflect the levels in brain. The data also demonstrate that corticosterone levels can change differentially in specific brain regions. These results, and the residual hormone seen in the brain after adrenalectomy, are suggestive evidence for a local origin of central corticosterone.
Resumo:
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.
Resumo:
Local hypoxia, as due to trauma, surgery, or arterial occlusive disease, may severely jeopardize the survival of the affected tissue and its wound-healing capacity. Initially developed to replace blood transfusions, artificial oxygen carriers have emerged as oxygen therapeutics in such conditions. The aim of this study was to target primary wound healing and survival in critically ischemic skin by the systemic application of left-shifted liposomal hemoglobin vesicles (HbVs). This was tested in bilateral, cranially based dorsal skin flaps in mice treated with a HbV solution with an oxygen affinity that was increased to a P(50) (partial oxygen tension at which the hemoglobin becomes 50% saturated with oxygen) of 9 mmHg. Twenty percent of the total blood volume of the HbV solution was injected immediately and 24 h after surgery. On the first postoperative day, oxygen saturation in the critically ischemic middle flap portions was increased from 23% (untreated control) to 39% in the HbV-treated animals (P < 0.05). Six days postoperatively, flap tissue survival was increased from 33% (control) to 57% (P < 0.01) and primary healing of the ischemic wound margins from 6.6 to 12.7 mm (P < 0.05) after HbV injection. In addition, higher capillary counts and endothelial nitric oxide synthase expression (both P < 0.01) were found in the immunostained flap tissue. We conclude that left-shifted HbVs may ameliorate the survival and primary wound healing in critically ischemic skin, possibly mediated by endothelial nitric oxide synthase-induced neovascularization.
Resumo:
BACKGROUND: The aim of this study was to develop an experimental model that allows to elude the potential role of the preexisting graft microvasculature for vascularization and mineralization of osteochondral grafts. ANIMALS AND METHODS: For that purpose, the II-IV metatarsals of fetal DDY-mice known to be nonvascularized at day 16 of gestation (M16) but vascularized at day 18 (M18) were freshly transplanted into dorsal skin fold chambers of adult DDY mice. Using intravital microscopy angiogenesis, leukocyte-endothelium interaction and mineralization were assessed for 12 days. RESULTS: Angiogenesis occurred at 32 hours in M18, but not before 57 hours in M16 (p = 0.002), with perfusion of these vessels at 42 hours (p = 0.005) and 65 hours (p = 0.1), respectively. Vessels reached a density three times as high as that of the recipient site at day 6, remaining constant until day 12 in M18, whereas in M16 vascular density increased from day 6 and reached that of M18 at day 12 (p = 0.04). Leukocyte-endothelium interaction showed sticker counts elevated by a factor of 4-5 in M18 as compared to M16. Mineralization of osteochondral grafts did not differ between M16 and M18, which significantly increased in both groups throughout the observation period. INTERPRETATION: We propose the faster kinetics in the angiogenic response to M18 and the elevated counts of sticking leukocytes to rest on the potential of establishing end-to-end anastomoses (inosculation) of the vascularized graft with recipient vessels.
Resumo:
Advances in spinal cord injury (SCI) research are dependent on quality animal models, which in turn rely on sensitive outcome measures able to detect functional differences in animals following injury. To date, most measurements of dysfunction following SCI rely either on the subjective rating of observers or the slow throughput of manual gait assessment. The present study compares the gait of normal and contusion-injured mice using the TreadScan system. TreadScan utilizes a transparent treadmill belt and a high-speed camera to capture the footprints of animals and automatically analyze gait characteristics. Adult female C57Bl/6 mice were introduced to the treadmill prior to receiving either a standardized mild, moderate, or sham contusion spinal cord injury. TreadScan gait analyses were performed weekly for 10 weeks and compared with scores on the Basso Mouse Scale (BMS). Results indicate that this software successfully differentiates sham animals from injured animals on a number of gait characteristics, including hindlimb swing time, stride length, toe spread, and track width. Differences were found between mild and moderate contusion injuries, indicating a high degree of sensitivity within the system. Rear track width, a measure of the animal's hindlimb base of support, correlated strongly both with spared white matter percentage and with terminal BMS. TreadScan allows for an objective and rapid behavioral assessment of locomotor function following mild-moderate contusive SCI, where the majority of mice still exhibit hindlimb weight support and plantar paw placement during stepping.
Resumo:
C57BL/6 mice were infected with Neospora caninum tachyzoites during pregnancy, yielding a transplacental infection of developing fetuses. Subsequently, congenitally infected newborn mice were treated either once or three times with toltrazuril (or placebo) at a concentration of 31.25 mg compound per kg body weight. Both toltrazuril and placebo treatment had no negative effect on newborns, as noninfected treated pups developed normally without differences in mortality and morbidity to matching nontreated control animals. Already one application of toltrazuril was significantly (p < 0.01) able to delay the outbreak of neosporosis in newborn mice, when compared to placebo-treated infected controls. We found significantly higher proportion of surviving newborns in one-time-toltrazuril-treated and three-time-toltrazuril-treated groups (34% and 54%, respectively) when compared to one-time-placebo-treated and three-time-placebo-treated groups (14% and 30%, respectively). There was no significant difference (p = 0.2) in the proportion of surviving pups between one-time-toltrazuril and three-time-toltrazuril treatment. However, the number of diseased and Neospora-positive pups (46% and 47%, respectively) was markedly reduced after three-time-toltrazuril treatment compared to all other groups. Three-time-treatment also resulted in the highest antibody (IgG, IgG2a) response. Pharmacokinetic analyses using individual serum samples revealed that, although toltrazuril was absorbed and metabolized to toltrazuril sulfone by newborn mice, medicated animals exhibited an unexpected rapid turn-over (half-life time) of the compound. Toltrazuril and the metabolite were also found in brain tissues, indicating that passage of the blood-brain barrier occurred. In conclusion, we could show that three times treatment with toltrazuril had a high impact on the course of infection in congenitally N. caninum-infected newborn mice.
Resumo:
The provision of environmental enrichment to mice used in research is a topic that generates often widely divergent opinions as to the value of this husbandry practice. The literature is replete with examples of the positive effects enrichment has on the animals’ welfare. However, many published studies have demonstrated that enrichment can impact research in unforeseen and unpredictable ways, and thus may pose a concern as a confounding variable. Indeed, an analysis of the outcomes of murine enrichment studies suggests that both views are accurate, and thus inclusion of environmental enrichment in the mouse cage should be done with the understanding that while the use of appropriate cage complexities can certainly enhance animal welfare and concomitantly provide a better animal model for scientific purposes, the wrong choice of enrichment may negatively impact the welfare of the animals or the research. This chapter describes our current understanding regarding the effects of several commonly used mouse enrichments.
Resumo:
Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals.
Resumo:
Adult zebrafish Danio rerio originating from one stock used as control animals in a toxicological study were examined histopathologically for the occurrence of spontaneous lesions in the gonads. While no histopathological changes were seen in the testes, the ovaries showed lesions consisting mainly of acute granulomatous inflammation with increased atresia and the presence of egg debris in the ovarian parenchyma and in the oviduct. Since infectious agents could not be detected and the fish were not exposed to toxicants, we consider these lesions as spontaneous alterations of the ovaries.
Resumo:
Children conceived by assisted reproductive technologies (ART) display a level of vascular dysfunction similar to that seen in children of mothers with preeclamspia. The long-term consequences of ART-associated vascular disorders are unknown and difficult to investigate in healthy children. Here, we found that vasculature from mice generated by ART display endothelial dysfunction and increased stiffness, which translated into arterial hypertension in vivo. Progeny of male ART mice also exhibited vascular dysfunction, suggesting underlying epigenetic modifications. ART mice had altered methylation at the promoter of the gene encoding eNOS in the aorta, which correlated with decreased vascular eNOS expression and NO synthesis. Administration of a deacetylase inhibitor to ART mice normalized vascular gene methylation and function and resulted in progeny without vascular dysfunction. The induction of ART-associated vascular and epigenetic alterations appeared to be related to the embryo environment; these alterations were possibly facilitated by the hormonally stimulated ovulation accompanying ART. Finally, ART mice challenged with a high-fat diet had roughly a 25% shorter life span compared with control animals. This study highlights the potential of ART to induce vascular dysfunction and shorten life span and suggests that epigenetic alterations contribute to these problems.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
Bovine besnoitiosis is considered an emerging chronic and debilitating disease in Europe. Many infections remain subclinical, and the only sign of disease is the presence of parasitic cysts in the sclera and conjunctiva. Serological tests are useful for detecting asymptomatic cattle/sub-clinical infections for control purposes, as there are no effective drugs or vaccines. For this purpose, diagnostic tools need to be further standardized. Thus, the aim of this study was to compare the serological tests available in Europe in a multi-centred study. A coded panel of 241 well-characterized sera from infected and non-infected bovines was provided by all participants (SALUVET-Madrid, FLI-Wusterhausen, ENV-Toulouse, IPB-Berne). The tests evaluated were as follows: an in-house ELISA, three commercial ELISAs (INGEZIM BES 12.BES.K1 INGENASA, PrioCHECK Besnoitia Ab V2.0, ID Screen Besnoitia indirect IDVET), two IFATs and seven Western blot tests (tachyzoite and bradyzoite extracts under reducing and non-reducing conditions). Two different definitions of a gold standard were used: (i) the result of the majority of tests ('Majority of tests') and (ii) the majority of test results plus pre-test information based on clinical signs ('Majority of tests plus pre-test info'). Relative to the gold standard 'Majority of tests', almost 100% sensitivity (Se) and specificity (Sp) were obtained with SALUVET-Madrid and FLI-Wusterhausen tachyzoite- and bradyzoite-based Western blot tests under non-reducing conditions. On the ELISAs, PrioCHECK Besnoitia Ab V2.0 showed 100% Se and 98.8% Sp, whereas ID Screen Besnoitia indirect IDVET showed 97.2% Se and 100% Sp. The in-house ELISA and INGEZIM BES 12.BES.K1 INGENASA showed 97.3% and 97.2% Se; and 94.6% and 93.0% Sp, respectively. IFAT FLI-Wusterhausen performed better than IFAT SALUVET-Madrid, with 100% Se and 95.4% Sp. Relative to the gold standard 'Majority of test plus pre-test info', Sp significantly decreased; this result was expected because of the existence of seronegative animals with clinical signs. All ELISAs performed very well and could be used in epidemiological studies; however, Western blot tests performed better and could be employed as a posteriori tests for control purposes in the case of uncertain results from valuable samples.