75 resultados para Menno Simons, 1496-1561.
VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
Resumo:
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease.
Resumo:
Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.
Resumo:
In recent decades, extremely hazardous windstorms have caused enormous losses to buildings, infrastructure and forests in Switzerland. This has increased societal and scientific interest in the intensity and frequency of historical high-impact storms. However, high-resolution wind data and damage statistics mostly span recent decades only. For this study, we collected quantitative (e.g., volumes of windfall timber, losses relating to buildings) and descriptive (e.g., forestry or insurance reports) information on the impact of historical windstorms. To define windstorm severity, normalized and declustered quantitative data were processed by extreme value statistics. Descriptive information was classified using a conceptual guideline. Validation with independent damage information, as well as comparison with wind measurements and a reanalysis, indicates that the most hazardous winter storms are captured, while too few moderate windstorms are detected. Strong storms in the wind measurements and reanalysis are thus added to the catalog. The final catalog encompasses approximately 240 high-impact windstorms in Switzerland since 1859. It features three robust severity classes and contains eight extreme windstorms. Evidence of high winter storm activity in the early and late 20th century compared to the mid-20th century in both damage and wind data indicates a co-variability of hazard and related damage on decadal timescales.
Resumo:
Venous thromboembolism (VTE) is a potentially lethal clinical condition that is suspected in patients with common clinical complaints, in many and varied, clinical care settings. Once VTE is diagnosed, optimal therapeutic management (thrombolysis, IVC filters, type and duration of anticoagulants) and ideal therapeutic management settings (outpatient, critical care) are also controversial. Clinical prediction tools, including clinical decision rules and D-Dimer, have been developed, and some validated, to assist clinical decision making along the diagnostic and therapeutic management paths for VTE. Despite these developments, practice variation is high and there remain many controversies in the use of the clinical prediction tools. In this narrative review, we highlight challenges and controversies in VTE diagnostic and therapeutic management with a focus on clinical decision rules and D-Dimer.
Resumo:
Arginine vasopressin (AVP) has a key role in osmoregulation by facilitating water transport in the collecting duct. Recent evidence suggests that AVP may have additional effects on renal function and favor cyst growth in polycystic kidney disease. Whether AVP also affects kidney structure in the general population is unknown. We analyzed the association of copeptin, an established surrogate for AVP, with parameters of renal function and morphology in a multicentric population-based cohort. Participants from families of European ancestry were randomly selected in three Swiss cities. We used linear multilevel regression analysis to explore the association of copeptin with renal function parameters as well as kidney length and the presence of simple renal cysts assessed by ultrasound examination. Copeptin levels were log-transformed. The 529 women and 481 men had median copeptin levels of 3.0 and 5.2 pmol/L, respectively (P<0.001). In multivariable analyses, the copeptin level was associated inversely with eGFR (β=-2.1; 95% confidence interval [95% CI], -3.3 to -0.8; P=0.002) and kidney length (β=-1.2; 95% CI, -1.9 to -0.4; P=0.003) but positively with 24-hour urinary albumin excretion (β=0.11; 95% CI, 0.01 to 0.20; P=0.03) and urine osmolality (β=0.08; 95% CI, 0.05 to 0.10; P<0.001). A positive association was found between the copeptin level and the presence of renal cysts (odds ratio, 1.6; 95% CI, 1.1 to 2.4; P=0.02). These results suggest that AVP has a pleiotropic role in renal function and may favor the development of simple renal cysts.
Resumo:
Intake of caffeinated beverages might be associated with reduced cardiovascular mortality possibly via the lowering of blood pressure. We estimated the association of ambulatory blood pressure with urinary caffeine and caffeine metabolites in a population-based sample. Families were randomly selected from the general population of Swiss cities. Ambulatory blood pressure monitoring was conducted using validated devices. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 hours urine using ultrahigh performance liquid chromatography tandem mass spectrometry. We used mixed models to explore the associations of urinary excretions with blood pressure although adjusting for major confounders. The 836 participants (48.9% men) included in this analysis had mean age of 47.8 and mean 24-hour systolic and diastolic blood pressure of 120.1 and 78.0 mm Hg. For each doubling of caffeine excretion, 24-hour and night-time systolic blood pressure decreased by 0.642 and 1.107 mm Hg (both P values <0.040). Similar inverse associations were observed for paraxanthine and theophylline. Adjusted night-time systolic blood pressure in the first (lowest), second, third, and fourth (highest) quartile of paraxanthine urinary excretions were 110.3, 107.3, 107.3, and 105.1 mm Hg, respectively (P trend <0.05). No associations of urinary excretions with diastolic blood pressure were generally found, and theobromine excretion was not associated with blood pressure. Anti-hypertensive therapy, diabetes mellitus, and alcohol consumption modify the association of caffeine urinary excretion with systolic blood pressure. Ambulatory systolic blood pressure was inversely associated with urinary excretions of caffeine and other caffeine metabolites. Our results are compatible with a potential protective effect of caffeine on blood pressure.
Resumo:
BACKGROUND Urinary creatinine excretion is used as a marker of completeness of timed urine collections, which are a keystone of several metabolic evaluations in clinical investigations and epidemiological surveys. The current reference values for 24-hour urinary creatinine excretion rely on observations performed in the 1960s and 1970s in relatively small and mostly selected groups, and may thus poorly fit to the present-day general European population. The aim of this study was to establish and validate anthropometry-based age- and sex-specific reference values of the 24-hour urinary creatinine excretion on adult populations with preserved renal function. METHODS We used data from two independent Swiss cross-sectional population-based studies with standardised 24-hour urinary collection and measured anthropometric variables. Only data from adults of European descent, with estimated glomerular filtration rate (eGFR) ≥60 ml/min/1.73 m(2) and reported completeness of the urinary collection were retained. A linear regression model was developed to predict centiles of the 24-hour urinary creatinine excretion in 1,137 participants from the Swiss Survey on Salt and validated in 994 participants from the Swiss Kidney Project on Genes in Hypertension. RESULTS The mean urinary creatinine excretion was 193 ± 41 μmol/kg/24 hours in men and 151 ± 38 μmol/kg/24 hours in women in the Swiss Survey on Salt. The values were inversely correlated with age and body mass index (BMI). Based on current reference values (177 to 221 μmol/kg/24 hours in men and 133 to 177 μmol/kg/24 hours in women), 56% of the urinary collections in the whole population and 67% in people >60 years old would have been considered as inaccurate. A linear regression model with sex, BMI and age as predictor variables was found to provide the best prediction of the observed values and showed a good fit when applied to the validation population. CONCLUSIONS We propose a validated prediction equation for 24-hour urinary creatinine excretion in the general European population, based on readily available variables such as age, sex and BMI, and a few derived normograms to ease its clinical application. This should help healthcare providers to interpret the completeness of a 24-hour urine collection in daily clinical practice and in epidemiological population studies.
Resumo:
The effects of tetrahydrocannabinol (THC) and endogenous cannabinoids (endocannabinoids, ECs) are both mediated by activation of the cannabinoid receptors CB1 and CB2. Exogenous activation of these receptors by THC could therefore alter EC levels. We tested this hypothesis in healthy volunteers (n = 25) who received a large intravenous dose of THC (0.10 mg/kg). Effects on the EC system were quantified by serial measurements of plasma ECs after THC administration. Eleven blood samples were drawn during the first 5 h after THC administration and two more samples after 24 and 48 h. THC, its metabolites THC-OH (biologically active) and THC-COOH (non-active), and the ECs anandamide and 2-arachidonoylglycerol (2-AG) were quantified by liquid chromatography-mass spectrometry. EC-plasma levels showed a biphasic response after THC injection reaching maximal values at 30 min. Anandamide increased slightly from 0.58 ± 0.21 ng/ml at baseline to 0.64 ± 0.24 ng/ml (p < 0.05) and 2-AG from 7.60 ± 4.30 ng/ml to 9.50 ± 5.90 ng/ml (p < 0.05). After reaching maximal concentrations, EC plasma levels decreased markedly to a nadir of 300 min after THC administration (to 0.32 ± 0.15 ng/ml for anandamide and to 5.50 ± 3.01 ng/ml for 2-AG, p < 0.05). EC plasma concentrations returned to near baseline levels until 48 h after the experiment. THC (0.76 ± 0.16 ng/ml) and THC-OH (0.36 ± 0.17 ng/ml) were still measurable at 24 h and remained detectible until 48 h after THC administration. Although the underlying mechanism is not clear, high doses of intravenous THC appear to influence endogenous cannabinoid concentrations and presumably EC-signalling.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.