47 resultados para Mean values


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim The usual hypothesis about the relationship between niche breadth and range size posits that species with the capacity to use a wider range of resources or to tolerate a greater range of environmental conditions should be more widespread. In plants, broader niches are often hypothesized to be due to pronounced phenotypic plasticity, and more plastic species are therefore predicted to be more common. We examined the relationship between the magnitude of phenotypic plasticity in five functional traits, mainly related to leaves, and several measures of abundance in 105 Central European grassland species. We further tested whether mean values of traits, rather than their plasticity, better explain the commonness of species, possibly because they are pre-adapted to exploiting the most common resources. Location Central Europe. Methods In a multispecies experiment with 105 species we measured leaf thickness, leaf greenness, specific leaf area, leaf dry matter content and plant height, and the plasticity of these traits in response to fertilization, waterlogging and shading. For the same species we also obtained five measures of commonness, ranging from plot-level abundance to range size in Europe. We then examined whether these measures of commonness were associated with the magnitude of phenotypic plasticity, expressed as composite plasticity of all traits across the experimental treatments. We further estimated the relative importance of trait plasticity and trait means for abundance and geographical range size. Results More abundant species were less plastic. This negative relationship was fairly consistent across several spatial scales of commonness, but it was weak. Indeed, compared with trait means, plasticity was relatively unimportant for explaining differences in species commonness. Main conclusions Our results do not indicate that larger phenotypic plasticity of leaf morphological traits enhances species abundance. Furthermore, possession of a particular trait value, rather than of trait plasticity, is a more important determinant of species commonness.