47 resultados para Mathematical Model, Chlamydia Trachomatis, Partial Differential Equation, Immune
Resumo:
Background: Accurate information about the prevalence of Chlamydia trachomatis is needed to assess national prevention and control measures. Methods: We systematically reviewed population-based cross-sectional studies that estimated chlamydia prevalence in European Union/European Economic Area (EU/EEA) Member States and non-European high income countries from January 1990 to August 2012. We examined results in forest plots, explored heterogeneity using the I2 statistic, and conducted random effects meta-analysis if appropriate. Metaregression was used to examine the relationship between study characteristics and chlamydia prevalence estimates. Results: We included 25 population-based studies from 11 EU/EEA countries and 14 studies from five other high income countries. Four EU/EEA Member States reported on nationally representative surveys of sexually experienced adults aged 18-26 years (response rates 52-71%). In women, chlamydia point prevalence estimates ranged from 3.0-5.3%; the pooled average of these estimates was 3.6% (95% CI 2.4, 4.8, I2 0%). In men, estimates ranged from 2.4-7.3% (pooled average 3.5%; 95% CI 1.9, 5.2, I2 27%). Estimates in EU/EEA Member States were statistically consistent with those in other high income countries (I2 0% for women, 6% for men). There was statistical evidence of an association between survey response rate and estimated chlamydia prevalence; estimates were higher in surveys with lower response rates, (p=0.003 in women, 0.018 in men). Conclusions: Population-based surveys that estimate chlamydia prevalence are at risk of participation bias owing to low response rates. Estimates obtained in nationally representative samples of the general population of EU/EEA Member States are similar to estimates from other high income countries.
Resumo:
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.