48 resultados para MPSK modulation
Resumo:
The aim of this study was to investigate the effect of human recombinant erythropoietin (EPO) on the microcirculation and oxygenation of critically ischemic tissue and to elucidate the role of endothelial NO synthase in EPO-mediated tissue protection. Island flaps were dissected from the back skin of anesthetized male Syrian golden hamsters including a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. Before ischemia, animals received an injection of epoetin beta at a dose of 5,000 U/kg body weight with (n = 7) or without (n = 7) blocking NO synthase by 30 mg/kg body weight L-NAME (Nomega-nitro-L-arginine methyl ester hydrochloride). Saline-treated animals served as control (n = 7). Ischemic tissue damage was characterized by severe hypoperfusion and inflammation, hypoxia, and accumulation of apoptotic cell nuclei after 5 h of collateralization. Erythropoietin pretreatment increased arteriolar and venular blood flow by 33% and 37%, respectively (P < 0.05), and attenuated leukocytic inflammation by approximately 75% (P < 0.05). Furthermore, partial tissue oxygen tension in the ischemic tissue increased from 8.2 to 15.8 mmHg (P < 0.05), which was paralleled by a 21% increased density of patent capillaries (P < 0.05) and a 50% reduced apoptotic cell count (P < 0.05). The improved microcirculation and oxygenation were associated with a 2.2-fold (P < 0.05) increase of endothelial NO synthase protein expression. Of interest, L-NAME completely abolished all the beneficial effects of EPO pretreatment. Our study demonstrates that, in critically ischemic and hypoxic collateralized tissue, EPO pretreatment improves tissue perfusion and oxygenation in vivo. This effect may be attributed to NO-dependent vasodilative effects and anti-inflammatory actions on the altered vascular endothelium.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of automatic tube current modulation on radiation dose and image quality for low tube voltage computed tomography (CT) angiography. MATERIALS AND METHODS: An anthropomorphic phantom was scanned with a 64-section CT scanner using following tube voltages: 140 kVp (Protocol A), 120 kVp (Protocol B), 100 kVp (Protocol C), and 80 kVp (Protocol D). To achieve similar noise, combined z-axis and xy-axes automatic tube current modulation was applied. Effective dose (ED) for the four tube voltages was assessed. Three plastic vials filled with different concentrations of iodinated solution were placed on the phantom's abdomen to obtain attenuation measurements. The signal-to-noise ratio (SNR) was calculated and a figure of merit (FOM) for each iodinated solution was computed as SNR(2)/ED. RESULTS: The ED was kept similar for the four different tube voltages: (A) 5.4 mSv +/- 0.3, (B) 4.1 mSv +/- 0.6, (C) 3.9 mSv +/- 0.5, and (D) 4.2 mSv +/- 0.3 (P > .05). As the tube voltage decreased from 140 to 80 kVp, image noise was maintained (range, 13.8-14.9 HU) (P > .05). SNR increased as the tube voltage decreased, with an overall gain of 119% for the 80-kVp compared to the 140-kVp protocol (P < .05). The FOM results indicated that with a reduction of the tube voltage from 140 to 120, 100, and 80 kVp, at constant SNR, ED was reduced by a factor of 2.1, 3.3, and 5.1, respectively, (P < .001). CONCLUSIONS: As tube voltage decreases, automatic tube current modulation for CT angiography yields either a significant increase in image quality at constant radiation dose or a significant decrease in radiation dose at a constant image quality.