69 resultados para MAGMATIC DEFORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1–σ3σ1–σ3) of ∼300 MPa∼300 MPa at View the MathML source390±30°C during late Miocene NNW–SSE orogenic shortening and regional uplift of the Aar Massif. This differential stress resulted in strain-hardening of the quartz at very low total strain (<5%<5%) while nearby shear zones were accommodating significant displacements. Further implementation of these experimentally derived rules should provide new insight into processes of fluid–rock interaction in the ductile regime within the Earth's crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz). Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4). Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone. Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discussions on the orogenic evolution during Earth's history converge to the question of a different thermal structure in the Archean compared to the Phanerozoic and the applicability of the plate tectonic paradigm. However, geothermal structures are transient in orogens and are difficult to translate into large-scale tectonics and exhumation rates. Therefore, we propose depth–time data in the Archean Skjoldungen Orogen (SE Greenland, North Atlantic Craton) that allow for reconstruction of an exhumation rate independent of geothermal gradients. The resulting exhumation rate of ca. 0.4 km/Ma is similar to exhumation rates during erosion-controlled processes in modern orogens. These exhumation rates can only be established by erosion time constants similar to modern orogens. The occurrence of erosion-controlled exhumation is best explained by a stiff foreland promoting localized deformation in the orogen. Therefore, a switch from magmatic-dominated processes to localized deformation is proposed in the Skjoldungen Orogen area. This is supported by a change in magma composition and volume, from widespread granodiorite to localized alkaline intrusions. In addition, the involved metasedimentary rocks include detrital zircons of the only 50 Ma older foreland, which also correspond to erosion and tectonics as in modern orogens, i.e. flysh-type sediments. Relatively fast exhumation rates and the structural-magmatic evolution of the Neoarchean Skjoldungen Orogen thus indicate modern-style tectonic processes where stiff Mesoarchean continental crust forms a foreland to a collisional orogen instead of typical accretionary tectonics of weak island arc-like terranes in granite-greenstone terranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convergence between the Eurasian and Arabian plates has created a complicated structural setting in the Eastern Turkish high plateau (ETHP), particularly around the Karlıova Triple Junction (KTJ) where the Eurasian, Arabian, and Anatolian plates intersect. This region of interest includes the junction of the North Anatolian Shear Zone (NASZ) and the East Anatolian Shear Zone (EASZ), which forms the northern border of the westwardly extruding Anatolian Scholle and the western boundary of the ETHP, respectively. In this study, we focused on a poorly studied component of the KTJ, the Varto Fault Zone (VFZ), and the adjacent secondary structures, which have complex structural settings. Through integrated analyses of remote sensing and field observations, we identified a widely distributed transpressional zone where the Varto segment of the VFZ forms the most northern boundary. The other segments, namely, the Leylekdağ and Çayçatı segments, are oblique-reverse faults that are significantly defined by uplifted topography along their strikes. The measured 515 and 265 m of cumulative uplifts for Mt. Leylek and Mt. Dodan, respectively, yield a minimum uplift rate of 0.35 mm/a for the last 2.2 Ma. The multi-oriented secondary structures were mostly correlated with “the distributed strike-slip” and “the distributed transpressional” in analogue experiments. The misfits in strike of some of secondary faults between our observations and the experimental results were justified by about 20° to 25° clockwise restoration of all relevant structures that were palaeomagnetically measured to have happened since ~ 2.8 Ma ago. Our detected fault patterns and their true nature are well aligned as being part of a transpressional tectonic setting that supports previously suggested stationary triple junction models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a non-rigid free-from 2D-3D registration approach using statistical deformation model (SDM). In our approach the SDM is first constructed from a set of training data using a non-rigid registration algorithm based on b-spline free-form deformation to encode a priori information about the underlying anatomy. A novel intensity-based non-rigid 2D-3D registration algorithm is then presented to iteratively fit the 3D b-spline-based SDM to the 2D X-ray images of an unseen subject, which requires a computationally expensive inversion of the instantiated deformation in each iteration. In this paper, we propose to solve this challenge with a fast B-spline pseudo-inversion algorithm that is implemented on graphics processing unit (GPU). Experiments conducted on C-arm and X-ray images of cadaveric femurs demonstrate the efficacy of the present approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Norcamphor (C7H10O) was subjected to plane strain simple shear in a see-through deformation rig at four different strain rate and temperature conditions. Two transient stages in the microfabric evolution to steady state are distinguished. The grain scale mechanisms associated with the microstructural and textural evolution vary with the applied temperature, strain rate and strain. In high-temperature-low-strain-rate experiments, computer integrated polarization microscopy reveals that the texture evolution is closely related to the crystallographic rotation paths and rotation rates of individual grains. High c-axis rotation rates at low to intermediate shear strains are related to the development of a symmetrical c-axis cross girdle by the end of the first transient stage (γ = 1.5 to 2). During the second transient stage (γ = 1.5 to 6), the cross girdle yields to an oblique c-axis single girdle as c-axis rotation rates decrease and the relative activity of grain boundary migration recrystallization increases. Steady state (γ > 8) is characterized by a stable end orientation of the sample texture and the cyclic growth, rotation and consumption of individual grains within the aggregate.