63 resultados para Logarithmic dependence
Resumo:
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.
Resumo:
Opioid substitution treatment (OST) for opioid dependence may be limited by adverse events (AEs). Increasing the range of therapeutic options optimizes outcomes and facilitates patient management. An international, multi-center, two-phase study investigated the efficacy and safety of slow-release oral morphine (SROM) versus methadone in patients receiving methadone therapy for opioid dependence. In phase 1 (two way cross-over, 11 weeks each period) patients were randomized to SROM or methadone oral solution. In phase 2 (25 weeks), patients continued treatment with SROM (group A) or switched from methadone to SROM (group B). In total, 211 out of 276 completed phase 1 and 198 entered phase 2 (n = 95 group A, n = 103 group B). Treatment with both SROM and methadone was well tolerated. However, the mean QTc-interval associated with methadone was significantly longer than that under SROM. Higher treatment satisfaction, fewer cravings for heroin, and lower mental stress were reported with SROM. This study adds a significant further weight of evidence that SROM is an effective and well tolerated long-term maintenance treatment for opioid dependence with a beneficial risk profile compared to methadone regarding cardiac effects and supports its clinical utility.
Resumo:
OBJECTIVES To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. MATERIAL AND METHODS Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. RESULTS In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 °C resulted in better tissue discrimination. CONCLUSION Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. KEY POINTS • Postmortem MR quantification is feasible for soft tissue discrimination and characterization • Temperature dependence of the T1 values challenges the MR quantification approach • The results provide the basis for computer-aided postmortem MRI diagnosis • Diagnostic criteria may also be applied for living patients.
Resumo:
We study the backscattering of solar wind protons from the lunar regolith using the Solar Wind Monitor of the Sub-keV Atom Reflecting Analyzer on Chandrayaan-1. Our study focuses on the component of the backscattered particles that leaves the regolith with a positive charge. We find that the fraction of the incident solar wind protons that backscatter as protons, i.e., the proton-backscattering efficiency, has an exponential dependence on the solar wind speed that varies from ~0.01% to ~1% for solar wind speeds of 250 km/s to 550 km/s. We also study the speed distribution of the backscattered protons in the fast (~550 km/s) solar wind case and find both a peak speed at ~80% of the solar wind speed and a spread of ~85 km/s. The observed flux variations and speed distribution of the backscattered protons can be explained by a speed-dependent charge state of the backscattered particles.
Resumo:
In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.
Resumo:
The integrated elliptic flow of charged particles produced in Pb+Pb collisions at √sNN = 2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v2, was measured in the pseudorapidity range |η| ≤ 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v2 integrated over pT, a 1 μb−1 data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v2 is compared to other measurements obtained with higher pT thresholds. The integrated elliptic flow is weakly decreasing with |η|. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.
Resumo:
This article provides an importance sampling algorithm for computing the probability of ruin with recuperation of a spectrally negative Lévy risk process with light-tailed downwards jumps. Ruin with recuperation corresponds to the following double passage event: for some t∈(0,∞)t∈(0,∞), the risk process starting at level x∈[0,∞)x∈[0,∞) falls below the null level during the period [0,t][0,t] and returns above the null level at the end of the period tt. The proposed Monte Carlo estimator is logarithmic efficient, as t,x→∞t,x→∞, when y=t/xy=t/x is constant and below a certain bound.
Resumo:
We present applicative theories of words corresponding to weak, and especially logarithmic, complexity classes. The theories for the logarithmic hierarchy and alternating logarithmic time formalise function algebras with concatenation recursion as main principle. We present two theories for logarithmic space where the first formalises a new two-sorted algebra which is very similar to Cook and Bellantoni's famous two-sorted algebra B for polynomial time [4]. The second theory describes logarithmic space by formalising concatenation- and sharply bounded recursion. All theories contain the predicates WW representing words, and VV representing temporary inaccessible words. They are inspired by Cantini's theories [6] formalising B.
Resumo:
During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers LH and LL in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers LH and LL, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was carried out using a total of seven emission bands between 1.5 and 4.5 eV, and the behavior of these bands was examined as a function of the annealing temperature. An emission band at ∼3.44 eV (360 nm) was found to be strongly enhanced when the annealing temperature was increased to 500 °C, and this band underwent a significant reduction in intensity with further increase in temperature. Furthermore, a new emission band at ∼3.73 eV (330 nm) became apparent for annealing temperatures in the range 600–700 °C. These new experimental results are discussed within the context of the model presented in this paper.
Resumo:
BACKGROUND High-dose benzodiazepine (BZD) dependence is associated with a wide variety of negative health consequences. Affected individuals are reported to suffer from severe mental disorders and are often unable to achieve long-term abstinence via recommended discontinuation strategies. Although it is increasingly understood that treatment interventions should take subjective experiences and beliefs into account, the perceptions of this group of individuals remain under-investigated. METHODS We conducted an exploratory qualitative study with 41 adult subjects meeting criteria for (high-dose) BZD-dependence, as defined by ICD-10. One-on-one in-depth interviews allowed for an exploration of this group's views on the reasons behind their initial and then continued use of BZDs, as well as their procurement strategies. Mayring's qualitative content analysis was used to evaluate our data. RESULTS In this sample, all participants had developed explanatory models for why they began using BZDs. We identified a multitude of reasons that we grouped into four broad categories, as explaining continued BZD use: (1) to cope with symptoms of psychological distress or mental disorder other than substance use, (2) to manage symptoms of physical or psychological discomfort associated with somatic disorder, (3) to alleviate symptoms of substance-related disorders, and (4) for recreational purposes, that is, sensation-seeking and other social reasons. Subjects often considered BZDs less dangerous than other substances and associated their use more often with harm reduction than as recreational. Specific obtainment strategies varied widely: the majority of participants oscillated between legal and illegal methods, often relying on the black market when faced with treatment termination. CONCLUSIONS Irrespective of comorbidity, participants expressed a clear preference for medically related explanatory models for their BZD use. We therefore suggest that clinicians consider patients' motives for long-term, high-dose BZD use when formulating treatment plans for this patient group, especially since it is known that individuals are more compliant with approaches they perceive to be manageable, tolerable, and effective.
Resumo:
With the aim of providing a worldsheet description of the refined topological string, we continue the study of a particular class of higher derivative couplings Fg,n in the type II string effective action compactified on a Calabi–Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of the theory, which relate the Fg,n to other component couplings. From the point of view of the topological theory, these equations describe the contribution of non-physical states to twisted correlation functions and encode an obstruction for interpreting the Fg,n as the free energy of the refined topological string theory. We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence under which the differential equations simplify and take the form of generalised holomorphic anomaly equations. We further test this approach against explicit calculations in the dual heterotic theory.
Resumo:
Insulin is an important regulator of renal salt and water excretion, and hyperinsulinemia has been implicated to play a role in hypertension. One of the target proteins of insulin action in the kidney is Na(+)/H(+) exchanger 3 (NHE3), a principal Na(+) transporter responsible for salt absorption in the mammalian proximal tubule. The molecular mechanisms involved in activation of NHE3 by insulin have not been studied so far. In opossum kidney (OK) cells, insulin increased Na(+)/H(+) exchange activity in a time- and concentration-dependent manner. This effect is due to activation of NHE3 as it persisted after pharmacological inhibition of NHE1 and NHE2. In the early phase of stimulation (2-12 h), NHE3 activity was increased without changes in NHE3 protein and mRNA. At 24 h, enhanced NHE3 activity was accompanied by an increase in total and cell surface NHE3 protein and NHE3 mRNA abundance. All the effects of insulin on NHE3 activity, protein, and mRNA were amplified in the presence of hydrocortisone. These results suggest that insulin stimulates renal tubular NHE3 activity via a biphasic mechanism involving posttranslational factors and an increase in NHE3 gene expression and the effects are dependent on the permissive action of hydrocortisone.