96 resultados para Liehu, Heidi
Resumo:
The surgical management of symptomatic femoroacetabular impingement (FAI) generally is indicated after the failure of a trial of nonsurgical treatment. Surgical planning includes an assessment of the labrochondral pathology as well as of the acetabular and proximal femoral bony deformity. Advanced articular cartilage disease generally is associated with poorer outcomes. Surgical hip dislocation and hip arthroscopy have been used, with favorable early outcomes and low complication rates. Careful patient selection is important in predicting the success of the surgical management of symptomatic FAI. A trial of nonsurgical management generally is recommended, but limited information exists regarding its success. The early outcomes of both open and arthroscopic surgical techniques demonstrate significant improvement in most patients, with relatively low rates of complications. Because poorer clinical outcomes are associated with more advanced articular cartilage degeneration, improved strategies for the earlier identification and disease staging of symptomatic patients may enhance the long-term outcomes of both nonsurgical and surgical management.
Resumo:
Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.
Resumo:
Hereditary variations in head morphology and head malformations are known in many species. The most common variation encountered in horses is maxillary prognathism. Prognathism and brachygnathism are syndromes of the upper and lower jaw, respectively. The resulting malocclusion can negatively affect teeth wear, and is considered a non-desirable trait in breeding programs. We performed a case-control analysis for maxillary prognathism in horses using 96 cases and 763 controls. All horses had been previously genotyped with a commercially available 50 k SNP array. We analyzed the data with a mixed-model considering the genomic relationships in order to account for population stratification. Two SNPs within a region on the distal end of chromosome ECA 13 reached the Bonferroni corrected genome-wide significance level. There is no known prognathism candidate gene located within this region. Therefore, our findings in the horse offer the possibility of identifying a novel gene involved in the complex genetics of prognathism that might also be relevant for humans and other livestock species.
Resumo:
In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.